Loading [MathJax]/extensions/MathZoom.js
Finite-size fluctuations in coevolutionary dynamics arise in models of biological as well as of social and economic systems. This brief tutorial review surveys a systematic approach starting from a stochastic process discrete both in time and state. The limit N → ∞ of an infinite population can be considered explicitly, generally leading to a replicator-type equation in zero order, and to a Fokker-Planck-type equation in first order in 1/√N. Consequences and relations to some previous approaches...
Understanding the evolution of individuals which live in a structured and fluctuating environment is of central importance in mathematical population genetics. Here we outline some of the mathematical challenges arising from modelling structured populations, primarily focussing on the interplay between forwards in time models for the evolution of the population and backwards in time models for the genealogical trees relating individuals in a sample from that population. In addition to classical...
We analyze a stochastic neuronal network model which corresponds to an all-to-all network
of discretized integrate-and-fire neurons where the synapses are failure-prone. This
network exhibits different phases of behavior corresponding to synchrony and asynchrony,
and we show that this is due to the limiting mean-field system possessing multiple
attractors. We also show that this mean-field limit exhibits a first-order phase
transition as a function...
Currently displaying 1 –
3 of
3