Previous Page 2

Displaying 21 – 33 of 33

Showing per page

Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime

Nathanaël Enriquez, Christophe Sabot, Olivier Zindy (2009)

Bulletin de la Société Mathématique de France

We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height log t . In the quenched setting, we also sharply estimate the distribution of the walk at time t .

An extension of a boundedness result for singular integral operators

Deniz Karlı (2016)

Colloquium Mathematicae

We study some operators originating from classical Littlewood-Paley theory. We consider their modification with respect to our discontinuous setup, where the underlying process is the product of a one-dimensional Brownian motion and a d-dimensional symmetric stable process. Two operators in focus are the G* and area functionals. Using the results obtained in our previous paper, we show that these operators are bounded on L p . Moreover, we generalize a classical multiplier theorem by weakening its...

Anomalous heat-kernel decay for random walk among bounded random conductances

N. Berger, M. Biskup, C. E. Hoffman, G. Kozma (2008)

Annales de l'I.H.P. Probabilités et statistiques

We consider the nearest-neighbor simple random walk on ℤd, d≥2, driven by a field of bounded random conductances ωxy∈[0, 1]. The conductance law is i.i.d. subject to the condition that the probability of ωxy>0 exceeds the threshold for bond percolation on ℤd. For environments in which the origin is connected to infinity by bonds with positive conductances, we study the decay of the 2n-step return probability 𝖯 ω 2 n ( 0 , 0 ) . We prove that 𝖯 ω 2 n ( 0 , 0 ) is bounded by a random constant timesn−d/2 in d=2, 3, while it...

Currently displaying 21 – 33 of 33

Previous Page 2