Jacobi elliptic functions and change of variable in a convolution.
Page 1
Paul McGill (1990)
Aequationes mathematicae
Jay Rosen (1999)
Annales de l'I.H.P. Probabilités et statistiques
Jay S. Rosen (1996)
Annales de l'I.H.P. Probabilités et statistiques
G. F. de Angelis, M. Serva (1990)
Annales de l'I.H.P. Physique théorique
Ryad Husseini, Moritz Kassmann (2009)
Annales de l'I.H.P. Probabilités et statistiques
Given a family of Lévy measures ν={ν(x, ⋅)}x∈ℝd, the present work deals with the regularity of harmonic functions and the Feller property of corresponding jump processes. The main aim is to establish continuity estimates for harmonic functions under weak assumptions on the family ν. Different from previous contributions the method covers cases where lower bounds on the probability of hitting small sets degenerate.
Ratanov, Nikita (2007)
Journal of Applied Mathematics and Stochastic Analysis
J. Jacod, A. V. Skorokhod (1996)
Annales de l'I.H.P. Probabilités et statistiques
Page 1