is not a semimartingale
Page 1 Next
Martin T. Barlow (1982)
Séminaire de probabilités de Strasbourg
Richard F. Bass (1987)
Séminaire de probabilités de Strasbourg
Giorgio Metafune (2001)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
M. A. Boudiba (1986)
Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
Serge Dubuc (1970)
Studia Mathematica
Paul-André Meyer (1978)
Séminaire de probabilités de Strasbourg
L. Gallardo, V. Ries (1979)
Studia Mathematica
F. Campillo (1986)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
G. Letac (1981)
Annales scientifiques de l'Université de Clermont. Mathématiques
Jacques Azéma, K. Hamza (1989)
Séminaire de probabilités de Strasbourg
Bernard Bru (1992)
Mathématiques et Sciences Humaines
Nous examinons la vie et l'œuvre de Wolfgang Doeblin à partir de sa correspondance et de ses papiers personnels déposés dans les différentes archives accessibles.
J. C. Lootgieter (1977)
Annales de l'I.H.P. Probabilités et statistiques
Petr Mandl (1969)
Kybernetika
M. Ledoux (1995)
Annales scientifiques de l'École Normale Supérieure
Arnaud Gloter, Emmanuel Gobet (2008)
Annales de l'I.H.P. Probabilités et statistiques
In this paper we prove the Local Asymptotic Mixed Normality (LAMN) property for the statistical model given by the observation of local means of a diffusion process X. Our data are given by ∫01X(s+i)/n dμ(s) for i=0, …, n−1 and the unknown parameter appears in the diffusion coefficient of the process X only. Although the data are neither markovian nor gaussian we can write down, with help of Malliavin calculus, an explicit expression for the log-likelihood of the model, and then study the asymptotic...
Eva Löcherbach (2002)
Annales de l'I.H.P. Probabilités et statistiques
Emmanuel Gobet (2002)
Annales de l'I.H.P. Probabilités et statistiques
Jean-Philippe Rouquès (2010)
ESAIM: Probability and Statistics
Consider a one dimensional nonlinear reaction-diffusion equation (KPP equation) with non-homogeneous second order term, discontinuous initial condition and small parameter. For points ahead of the Freidlin-KPP front, the solution tends to 0 and we obtain sharp asymptotics (i.e. non logarithmic). Our study follows the work of Ben Arous and Rouault who solved this problem in the homogeneous case. Our proof is probabilistic, and is based on the Feynman-Kac formula and the large deviation principle...
Jean-Philippe Rouques (1997)
ESAIM: Probability and Statistics
Hardy Hulley, Eckhard Platen (2008)
Banach Center Publications
We start with a general time-homogeneous scalar diffusion whose state space is an interval I ⊆ ℝ. If it is started at x ∈ I, then we consider the problem of imposing upper and/or lower boundary conditions at two points a,b ∈ I, where a < x < b. Using a simple integral identity, we derive general expressions for the Laplace transform of the transition density of the process, if killing or reflecting boundaries are specified. We also obtain a number of useful expressions for the Laplace transforms...
Page 1 Next