Displaying 221 – 240 of 383

Showing per page

Estimation of parameters in a network reliability model with spatial dependence

Ian Hepburn Dinwoodie (2010)

ESAIM: Probability and Statistics

An iterative method based on a fixed-point property is proposed for finding maximum likelihood estimators for parameters in a model of network reliability with spatial dependence. The method is shown to converge at a geometric rate under natural conditions on data.

Estimation of parameters in a network reliability model with spatial dependence

Ian Hepburn Dinwoodie (2005)

ESAIM: Probability and Statistics

An iterative method based on a fixed-point property is proposed for finding maximum likelihood estimators for parameters in a model of network reliability with spatial dependence. The method is shown to converge at a geometric rate under natural conditions on data.

Estimation of parameters of a spherical invariant stable distribution

Piotr Szymański (2012)

Applicationes Mathematicae

This paper concerns the estimation of the parameters that describe spherical invariant stable distributions: the index α ∈ (0,2] and the scale parameter σ >0. We present a kind of moment estimators derived from specially transformed original data.

Estimation of parameters of mean and variance in two-stage linear models

Júlia Volaufová (1987)

Aplikace matematiky

The paper deals with the estimation of unknown vector parameter of mean and scalar parameters of variance as well in two-stage linear model, which is a special type of mixed linear model. The necessary and sufficient condition for the existence of uniformly best unbiased estimator of parameter of means is given. The explicite formulas for these estimators and for the estimators of the parameters of variance as well are derived.

Estimation of polynomials in the regression model

Júlia Volaufová (1982)

Aplikace matematiky

Let 𝐘 be an n -dimensional random vector which is N n ( 𝐀 0 , 𝐊 ) distributed. A minimum variance unbiased estimator is given for f ( o ) provided f is an unbiasedly estimable functional of an unknown k -dimensional parameter 0 .

Estimation of reduced Palm distributions by random methods for Cox processes with unknown probability law

Emmanuelle Crétois (1995)

Applicationes Mathematicae

Let N i , i ≥ 1, be i.i.d. observable Cox processes on [a,b] directed by random measures Mi. Assume that the probability law of the Mi is completely unknown. Random techniques are developed (we use data from the processes N 1 ,..., N n to construct a partition of [a,b] whose extremities are random) to estimate L(μ,g) = E(exp(-(N(g) - μ(g))) | N - μ ≥ 0).

Estimation of second order parameters using probability weighted moments

Julien Worms, Rym Worms (2012)

ESAIM: Probability and Statistics

The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution (GPD) as an approximation for the distribution of excesses over a high threshold. In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in particular, this leads to the introduction of a new estimator for the second order parameter ρ, which will be compared to other recent estimators through...

Estimation of second order parameters using probability weighted moments

Julien Worms, Rym Worms (2012)

ESAIM: Probability and Statistics

The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution (GPD) as an approximation for the distribution of excesses over a high threshold. In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in particular, this leads to the introduction of a new estimator for the second order parameter ρ, which will be compared to other recent estimators through...

Estimation of summary characteristics from replicated spatial point processes

Zbyněk Pawlas (2011)

Kybernetika

Summary characteristics play an important role in the analysis of spatial point processes. We discuss various approaches to estimating summary characteristics from replicated observations of a stationary point process. The estimators are compared with respect to their integrated squared error. Simulations for three basic types of point processes help to indicate the best way of pooling the subwindow estimators. The most appropriate way depends on the particular summary characteristic, edge-correction...

Estimation of the density of a determinantal process

Yannick Baraud (2013)

Confluentes Mathematici

We consider the problem of estimating the density Π of a determinantal process N from the observation of n independent copies of it. We use an aggregation procedure based on robust testing to build our estimator. We establish non-asymptotic risk bounds with respect to the Hellinger loss and deduce, when n goes to infinity, uniform rates of convergence over classes of densities Π of interest.

Currently displaying 221 – 240 of 383