Explicit forms of block matrices in unbalanced cross classification
Karhunen-Loève expansions of Gaussian processes have numerous applications in Probability and Statistics. Unfortunately the set of Gaussian processes with explicitly known spectrum and eigenfunctions is narrow. An interpretation of three historical examples enables us to understand the key role of the Laplacian. This allows us to extend the set of Gaussian processes for which a very explicit Karhunen-Loève expansion can be derived.
We propose a new additive decomposition of probability tables – tensor rank-one decomposition. The basic idea is to decompose a probability table into a series of tables, such that the table that is the sum of the series is equal to the original table. Each table in the series has the same domain as the original table but can be expressed as a product of one- dimensional tables. Entries in tables are allowed to be any real number, i. e. they can be also negative numbers. The possibility of having...
Post-training rounding, also known as quantization, of estimated parameters stands as a widely adopted technique for mitigating energy consumption and latency in machine learning models. This theoretical endeavor delves into the examination of the impact of rounding estimated parameters in key regression methods within the realms of statistics and machine learning. The proposed approach allows for the perturbation of parameters through an additive error with values within a specified interval. This...
If a probability density p(x) (x ∈ ℝk) is bounded and R(t) := ∫e〈x, tu〉p(x)dx < ∞ for some linear functional u and all t ∈ (0,1), then, for each t ∈ (0,1) and all large enough n, the n-fold convolution of the t-tilted density ˜pt := e〈x, tu〉p(x)/R(t) is bounded. This is a corollary of a general, “non-i.i.d.” result, which is also shown to enjoy a certain optimality property. Such results and their corollaries stated in terms of the absolute integrability of the corresponding characteristic...
If a probability density p(x) (x ∈ ℝk) is bounded and R(t) := ∫e〈x, tu〉p(x)dx < ∞ for some linear functional u and all t ∈ (0,1), then, for each t ∈ (0,1) and all large enough n, the n-fold convolution of the t-tilted density := e〈x, tu〉p(x)/R(t) is bounded. This is a corollary of a general, “non-i.i.d.” result, which is also shown to enjoy a certain optimality property. Such results and their corollaries stated in terms of the absolute integrability of the corresponding characteristic...
A seminal paper by Rissanen, published in 1983, introduced the class of Variable Length Markov Chains and the algorithm Context which estimates the probabilistic tree generating the chain. Even if the subject was recently considered in several papers, the central question of the rate of convergence of the algorithm remained open. This is the question we address here. We provide an exponential upper bound for the probability of incorrect estimation of the probabilistic tree, as a function...
For a sequence of statistical experiments with a finite parameter set the asymptotic behavior of the maximum risk is studied for the problem of classification into disjoint subsets. The exponential rates of the optimal decision rule is determined and expressed in terms of the normalized limit of moment generating functions of likelihood ratios. Necessary and sufficient conditions for the existence of adaptive classification rules in the sense of Rukhin [Ru1] are given. The results are applied to...
Time series analysis deals with records that are collected over time. The objectives of time series analysis depend on the applications, but one of the main goals is to predict future values of the series. These values depend, usually in a stochastic manner, on the observations available at present. Such dependence has to be considered when predicting the future from its past, taking into account trend, seasonality and other features of the data. Some of the most successful forecasting methods are...
Robust methods similar to exponential smoothing are suggested in this paper. First previous results for exponential smoothing in are generalized using the regression quantiles, including a generalization to more parameters. Then a method based on the classical sign test is introduced that should deal not only with outliers but also with level shifts, including a detection of change points. Properties of various approaches are investigated by means of a simulation study. A real data example is...
Various types of exponential smoothing for data observed at irregular time intervals are surveyed. Double exponential smoothing and some modifications of Holt’s method for this type of data are suggested. A real data example compares double exponential smoothing and Wright’s modification of Holt’s method for data observed at irregular time intervals.
The paper deals with extensions of exponential smoothing type methods for univariate time series with irregular observations. An alternative method to Wright’s modification of simple exponential smoothing based on the corresponding ARIMA process is suggested. Exponential smoothing of order m for irregular data is derived. A similar method using a DLS **discounted least squares** estimation of polynomial trend of order m is derived as well. Maximum likelihood parameters estimation for forecasting...
Recursive time series methods are very popular due to their numerical simplicity. Their theoretical background is usually based on Kalman filtering in state space models (mostly in dynamic linear systems). However, in time series practice one must face frequently to outlying values (outliers), which require applying special methods of robust statistics. In the paper a simple robustification of Kalman filter is suggested using a simple truncation of the recursive residuals. Then this concept is applied...