ABSTRACT - Procedures for Epidemic Alternatives.
The problem of estimating the probability is considered when represents a multivariate stochastic input of a monotonic function . First, a heuristic method to bound , originally proposed by de Rocquigny (2009), is formally described, involving a specialized design of numerical experiments. Then a statistical estimation of is considered based on a sequential stochastic exploration of the input space. A maximum likelihood estimator of build from successive dependent Bernoulli data is defined...
Adaptive designs are used in phase III clinical trials for skewing the allocation pattern towards the better treatments. We use optimum design theory to provide a skewed biased-coin procedure for sequential designs with continuous responses. The skewed designs are used to provide adaptive designs, the performance of which is studied numerically for designs with three treatments. Important properties are loss and the proportion of allocation to inferior treatments. Regularisation to provide consistent...
We study the adaptive control problem for discrete-time Markov control processes with Borel state and action spaces and possibly unbounded one-stage costs. The processes are given by recurrent equations with i.i.d. -valued random vectors whose density is unknown. Assuming observability of we propose the procedure of statistical estimation of that allows us to prove discounted asymptotic optimality of two types of adaptive policies used early for the processes with bounded costs.
The optimal experiment for estimating the parameters of a nonlinear regression model usually depends on the value of these parameters, hence the problem of designing experiments that are robust with respect to parameter uncertainty. Sequential designpermits to adapt the experiment to the value of the parameters, and can thus be considered as a robust design procedure. By designing theexperiments sequentially, one introduces a feedback of information, and thus dynamics, into the design procedure....
The aim of this paper is to build an estimate of an unknown density as a linear combination of functions of a dictionary. Inspired by Candès and Tao’s approach, we propose a minimization of the ℓ1-norm of the coefficients in the linear combination under an adaptive Dantzig constraint coming from sharp concentration inequalities. This allows to consider a wide class of dictionaries. Under local or global structure assumptions, oracle inequalities are derived. These theoretical results are transposed...
Gaussian mixture models are widely used to study clustering problems. These model-based clustering methods require an accurate estimation of the unknown data density by Gaussian mixtures. In Maugis and Michel (2009), a penalized maximum likelihood estimator is proposed for automatically selecting the number of mixture components. In the present paper, a collection of univariate densities whose logarithm is locally β-Hölder with moment and tail conditions are considered. We show that this penalized...
Assume that (Xt)t∈Z is a real valued time series admitting a common marginal density f with respect to Lebesgue's measure. [Donoho et al. Ann. Stat.24 (1996) 508–539] propose near-minimax estimators based on thresholding wavelets to estimate f on a compact set in an independent and identically distributed setting. The aim of the present work is to extend these results to general weak dependent contexts. Weak dependence assumptions are expressed as decreasing bounds of covariance terms and are...
In this paper we are interested in the estimation of a density − defined on a compact interval of ℝ− from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski’s method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated...
We consider the problem of estimating the integral of the square of a density from the observation of a sample. Our method to estimate is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for -statistics of order 2 due to Houdré and Reynaud.
We consider the problem of estimating the integral of the square of a density f from the observation of a n sample. Our method to estimate is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for U-statistics of order 2 due to Houdré and Reynaud.
We propose in this work an original estimator of the conditional intensity of a marker-dependent counting process, that is, a counting process with covariates. We use model selection methods and provide a nonasymptotic bound for the risk of our estimator on a compact set. We show that our estimator reaches automatically a convergence rate over a functional class with a given (unknown) anisotropic regularity. Then, we prove a lower bound which establishes that this rate is optimal. Lastly, we provide...
In this paper, we study the problem of non parametric estimation of the stationary marginal density of an or a -mixing process, observed either in continuous time or in discrete time. We present an unified framework allowing to deal with many different cases. We consider a collection of finite dimensional linear regular spaces. We estimate using a projection estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization...