Displaying 41 – 60 of 183

Showing per page

Las f*-divergencias como criterio bayesiano de comparación de experimentos.

Julio A. Pardo, M.ª Luisa Menéndez, Leandro Pardo (1992)

Stochastica

In this paper a bayesian criterion for comparing different experiments based on the maximization of the f*-Divergence is proposed and studied. After a general setting of the criterion, we prove that this criterion verifies the main properties that a criterion for comparing experiments must satisfy.

Las medidas de f*-divergencia en el diseño secuencial de experimentos en un contexto bayesiano.

Domingo Morales, Leandro Pardo, Vicente Quesada (1986)

Trabajos de Estadística

Se presenta un método de selección secuencial de un número fijo de experimentos a partir de las medidas de f*-divergencia introducidas por Csiszar (1967). Este trabajo es similar al desarrollado por De Groot (1970) con funciones de incertidumbre; sin embargo, no sólo se considera el problema de espacio paramétrico finito, sino que se estudia además el caso de espacio paramétrico infinito.

Le dernier mot de Condorcet sur les élections

Pierre Crépel (1990)

Mathématiques et Sciences Humaines

Nous reconstituons ici le dernier mémoire (inédit) de Condorcet sur les élections ; ce texte était éparpillé en désordre dans plusieurs volumes différents des recueils de manuscrits de la Bibliothèque de l'Institut. Seul le début du mémoire a été publié, dans le Journal d'Instruction Sociale en 1793. En comparant les différentes formes d'élections proposées par Condorcet à partir de l'Essai sur l'application de l'analyse (1785) jusqu'à la Terreur, nous pouvons suivre l'évolution de ses idées et...

Le modèle bayésien

Philippe Caillot, Françoise Martin (1972)

Annales de l'I.H.P. Probabilités et statistiques

Le vocabulaire partagé par des sous-groupes d'une communauté

David Sankoff (1993)

Mathématiques et Sciences Humaines

On propose un indice de vocabulaire partagé γ afin d'évaluer les ressemblances et les différences entre les ensembles de mots utilisés dans deux sous-groupes d'une communauté. Cet indice mesure la différence entre le nombre moyen de mots partagés par deux locuteurs, l'un dans le premier groupe, l'autre dans le deuxième et le nombre prédit par une hypothèse nulle basée sur une distribution globale de la fréquence des mots. La formulation de γ permet des variations dans la taille de l'échantillon...

Learning extremal regulator implementation by a stochastic automaton and stochastic approximation theory

Ivan Brůha (1980)

Aplikace matematiky

There exist many different approaches to the investigation of the characteristics of learning system. These approaches use different branches of mathematics and, thus, obtain different results, some of them are too complicated and others do not match the results of practical experiments. This paper presents the modelling of learning systems by means of stochastic automate, mainly one particular model of a learning extremal regulator. The proof of convergence is based on Dvoretzky's Theorem on stochastic...

Learning the naive Bayes classifier with optimization models

Sona Taheri, Musa Mammadov (2013)

International Journal of Applied Mathematics and Computer Science

Naive Bayes is among the simplest probabilistic classifiers. It often performs surprisingly well in many real world applications, despite the strong assumption that all features are conditionally independent given the class. In the learning process of this classifier with the known structure, class probabilities and conditional probabilities are calculated using training data, and then values of these probabilities are used to classify new observations. In this paper, we introduce three novel optimization...

Least empirical risk procedures in statistical inference

Wojciech Niemiro (1993)

Applicationes Mathematicae

We consider the empirical risk function Q n ( α ) = 1 n i = 1 n · f ( α , Z i ) (for iid Z i ’s) under the assumption that f(α,z) is convex with respect to α. Asymptotics of the minimum of Q n ( α ) is investigated. Tests for linear hypotheses are derived. Our results generalize some of those concerning LAD estimators and related tests.

Least squares approximation in Bayesian analysis.

Michel Mouchart, Léopold Simar (1980)

Trabajos de Estadística e Investigación Operativa

This paper presents in a simple and unified framework the Least-Squares approximation of posterior expectations. Particular structures of the sampling process and of the prior distribution are used to organize and to generalize previous results. The two basic structures are obtained by considering unbiased estimators and exchangeable processes. These ideas are applied to the estimation of the mean. Sufficient reduction of the data is analysed when only the Least-Squares approximation is involved....

Least squares estimator consistency: a geometric approach

João Tiago Mexia, João Lita da Silva (2006)

Discussiones Mathematicae Probability and Statistics

Consistency of LSE estimator in linear models is studied assuming that the error vector has radial symmetry. Generalized polar coordinates and algebraic assumptions on the design matrix are considered in the results that are established.

Currently displaying 41 – 60 of 183