Estimating L-functionals for heavy-tailed distributions and application.
Though widely accepted, in nonparametric models admitting asymmetric distributions the sample median, if n=2k, may be a poor estimator of the population median. Shortcomings of estimators which are not equivariant are presented.
The statistical estimation problem of the normal distribution function and of the density at a point is considered. The traditional unbiased estimators are shown to have Bayes nature and admissibility of related generalized Bayes procedures is proved. Also inadmissibility of the unbiased density estimator is demonstrated.
Sometimes, e.g. in the context of estimating VaR (Value at Risk), underestimating a quantile is less desirable than overestimating it, which suggests measuring the error of estimation by an asymmetric loss function. As a loss function when estimating a parameter θ by an estimator T we take the well known Linex function exp{α(T-θ)} - α(T-θ) - 1. To estimate the quantile of order q ∈ (0,1) of a normal distribution N(μ,σ), we construct an optimal estimator in the class of all estimators of the form...
One of the basic estimation problems for continuous time stationary processes , is that of estimating based on the observation of the single block when the actual distribution of the process is not known. We will give fairly optimal universal estimates of this type that correspond to the optimal results in the case of discrete time processes.
An estimator of the contamination level of data is proposed in the framework of linear models and its asymptotic behavior is investigated. A numerical study illustrates its finite sample performance under an alternative.
In a recent paper we have introduced the fuzzy hyperbolic inequality index, to quantify the inequality associated with a fuzzy random variable in a finite population. In previous papers, we have also proven that the classical hyperbolic inequality index associated with real-valued random variables in finite populations can be unbiasedly estimated in random samplings. The aim of this paper is to analyze the problem of estimating the population fuzzy hyperbolic index associated with a fuzzy random...
The shape parameter of the Topp-Leone distribution is estimated from classical and Bayesian points of view based on Type I censored samples. The maximum likelihood and the approximate maximum likelihood estimates are derived. The Bayes estimate and the associated credible interval are approximated by using Lindley's approximation and Markov Chain Monte Carlo using the importance sampling technique. Monte Carlo simulations are performed to compare the performances of the proposed methods. Real and...
The probability density function of the stochastic cusp model belongs to the class of generalized exponential distributions. It accommodates variable skewness, kurtosis, and bimodality. A statistical test for bimodality of the stochastic cusp model using the maximum likelihood estimation and delta method for Cardan's discriminant is introduced in this paper, as is a necessary condition for bimodality, which can be used for simplified testing to reject bimodality. Numerical maximum likelihood estimation...