On the Choice of Support of Re-Descending ...-Functions in Linear Models with Asymmetric Error Distributions.
The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.
This paper deals with the convergence in distribution of the maximum of n independent and identically distributed random variables under power normalization. We measure the difference between the actual and asymptotic distributions in terms of the double-log scale. The error committed when replacing the actual distribution of the maximum under power normalization by its asymptotic distribution is studied, assuming that the cumulative distribution function of the random variables is known. Finally,...
Shanbhag (1972, 1979) showed that the diagonality of the Bhattacharyya matrix characterizes the set of normal, Poisson, binomial, negative binomial, gamma or Meixner hypergeometric distributions. In this note, using Shanbhag's techniques, we show that if a certain generalized version of the Bhattacharyya matrix is diagonal, then the bivariate distribution is either normal, Poisson, binomial, negative binomial, gamma or Meixner hypergeometric. Bartoszewicz (1980) extended the result of Blight and...
Orthogonal regression, also known as the total least squares method, regression with errors-in variables or as a calibration problem, analyzes linear relationship between variables. Comparing to the standard regression, both dependent and explanatory variables account for measurement errors. Through this paper we shortly discuss the orthogonal least squares, the least squares and the maximum likelihood methods for estimation of the orthogonal regression line. We also show that all mentioned approaches...
The autocorrelation function has a very important role in several application areas involving stochastic processes. In fact, it assumes the theoretical base for Spectral analysis, ARMA (and generalizations) modeling, detection, etc. However and as it is well known, the results obtained with the more current estimates of the autocorrelation function (biased or not) are frequently bad, even when we have access to a large number of points. On the other hand, in some applications, we need to perform...
In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order...
Hypothesis testing is a model selection problem for which the solution proposed by the two main statistical streams of thought, frequentists and Bayesians, substantially differ. One may think that this fact might be due to the prior chosen in the Bayesian analysis and that a convenient prior selection may reconcile both approaches. However, the Bayesian robustness viewpoint has shown that, in general, this is not so and hence a profound disagreement between both approaches exists. In this paper...