Nonparametric estimation of probability density functions based on orthogonal expansions.
In a multiple testing context, we consider a semiparametric mixture model with two components where one component is known and corresponds to the distribution of p-values under the null hypothesis and the other component f is nonparametric and stands for the distribution under the alternative hypothesis. Motivated by the issue of local false discovery rate estimation, we focus here on the estimation of the nonparametric unknown component f in the mixture, relying on a preliminary estimator of the...
The unknown survival function S(t) of a random variable T ≥ 0 is considered. First we study the properties of S(t) and then, we estimate it from a Bayesian point of view. We compare the estimator with the posterior mean and we finish giving Bayes rules for linear functions of S(t).
The problem of estimation of distribution functions or fractiles of non- negative random variables often occurs in the tasks of risk evaluation. There are many parametric models, however sometimes we need to know also some information about the shape and the type of the distribution. Unfortunately, classical approaches based on kernel approximations with a symmetric kernel do not give any guarantee of non-negativity for the low number of observations. In this note a heuristic approach, based on...
Given a sample from a discretely observed Lévy process X = (Xt)t≥0 of the finite jump activity, the problem of nonparametric estimation of the Lévy density ρ corresponding to the process X is studied. An estimator of ρ is proposed that is based on a suitable inversion of the Lévy–Khintchine formula and a plug-in device. The main results of the paper deal with upper risk bounds for estimation of ρ over suitable classes of Lévy triplets. The corresponding lower bounds are also discussed.
We introduce a quantitative measure Δ of stability in optimal sequential testing of two simple hypotheses about a density of observations: f=f₀ versus f=f₁. The index Δ represents an additional cost paid when a stopping rule optimal for the pair (f₀,f₁) is applied to test the hypothesis f=f₀ versus a "perturbed alternative" f=f̃₁. An upper bound for Δ is established in terms of the total variation distance between f₁(X)/f₀(X) and f̃₁(X)/f₀(X) with X∼f₀.
In the report, the performance of several methods of constructing confidence intervals for a mean of stationary sequence is investigated using extensive simulation study. The studied approaches are sample reuse block methods which do not resort to bootstrap. It turns out that the performance of some known methods strongly depends on a model under consideration and on whether a two-sided or one-sided interval is used. Among the methods studied, the block method based on weak convergence result by...
A method of estimation of intrinsic volume densities for stationary random closed sets in based on estimating volumes of tiny collars has been introduced in T. Mrkvička and J. Rataj, On estimation of intrinsic volume densities of stationary random closed sets, Stoch. Proc. Appl. 118 (2008), 2, 213-231. In this note, a stronger asymptotic consistency is proved in dimension 2. The implementation of the method is discussed in detail. An important step is the determination of dilation radii in the...
The properties of two recursive estimators of the Fourier coefficients of a regression function with respect to a complete orthonormal system of bounded functions (ek) , k=1,2,..., are considered in the case of the observation model , i=1,...,n , where are independent random variables with zero mean and finite variance, , i=1,...,n, form a random sample from a distribution with density ϱ =1/(b-a) (uniform distribution) and are independent of the errors , i=1,...,n . Unbiasedness and mean-square...
We present a review of several results concerning invariant density estimation by observations of ergodic diffusion process and some related problems. In every problem we propose a lower minimax bound on the risks of all estimators and then we construct an asymptotically efficient estimator.
2000 Mathematics Subject Classification: 62G07, 62L20.Tsybakov [31] introduced the method of stochastic approximation to construct a recursive estimator of the location q of the mode of a probability density. The aim of this paper is to provide a companion algorithm to Tsybakov's algorithm, which allows to simultaneously recursively approximate the size m of the mode. We provide a precise study of the joint weak convergence rate of both estimators. Moreover, we introduce the averaging principle...
In order to calibrate a penalization procedure for model selection, the statistician has to choose a shape for the penalty and a leading constant. In this paper, we study, for the marginal density estimation problem, the resampling penalties as general estimators of the shape of an ideal penalty. We prove that the selected estimator satisfies sharp oracle inequalities without remainder terms under a few assumptions on the marginal density and the collection of models. We also study the slope heuristic,...