The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We derive a central limit theorem for triangular arrays of possibly nonstationary random variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi [Stoch. Proc. Appl. 84 (1999) 313–342]. The proof uses a new variant of the Lindeberg method: the behavior of the partial sums is compared to that of partial sums of dependent Gaussian random variables. We also discuss a few applications in statistics which show that our central limit theorem is tailor-made for statistics...
We propose a class of unbiased and strongly consistent nonparametric kernel estimates of a probability density function, based on a random choice of the sample size and the kernel function. The expected sample size can be arbitrarily small and mild conditions on the local behavior of the density function are imposed.
Even for a well-trained statistician the construction of a histogram
for a given real-valued data set is a difficult problem. It is even
more difficult to construct a fully automatic procedure which
specifies the number and widths of the bins in a satisfactory manner
for a wide range of data sets. In this paper we compare several
histogram construction procedures by means of a simulation
study. The study includes plug-in methods, cross-validation,
penalized maximum
likelihood and the taut string...
Specific Gaussian mixtures are considered to solve simultaneously variable selection and clustering problems. A non asymptotic penalized criterion is proposed to choose the number of mixture components and the relevant variable subset. Because of the non linearity of the associated Kullback-Leibler contrast on Gaussian mixtures, a general model selection theorem for maximum likelihood estimation proposed by [Massart Concentration inequalities and model selection Springer, Berlin (2007). Lectures...
Specific Gaussian mixtures are considered to solve simultaneously
variable selection and clustering problems. A non asymptotic
penalized criterion is proposed to choose the number of mixture
components and the relevant variable subset. Because of the non
linearity of the associated Kullback-Leibler contrast on Gaussian
mixtures, a general model selection theorem for maximum likelihood
estimation proposed by [Massart Concentration inequalities and model selection
Springer, Berlin (2007).
Lectures...
Computationally attractive Fisher consistent robust estimation methods based on adaptive explanatory variables trimming are proposed for the logistic regression model. Results of a Monte Carlo experiment and a real data analysis show its good behavior for moderate sample sizes. The method is applicable when some distributional information about explanatory variables is available.
In this note we consider the estimation of the differential entropy of a probability density function. We propose a new adaptive estimator based on a plug-in approach and wavelet methods. Under the mean error, , this estimator attains fast rates of convergence for a wide class of functions. We present simulation results in order to support our theoretical findings.
The aim of this paper is to propose a new approach to probability density function (PDF) estimation which is based on the fuzzy transform (F-transform) introduced by Perfilieva in [10]. Firstly, a smoothing filter based on the combination of the discrete direct and continuous inverse F-transform is introduced and some of the basic properties are investigated. Next, an alternative approach to PDF estimation based on the proposed smoothing filter is established and compared with the most used method...
The aim of this paper is to build an estimate of an unknown density as a linear combination of functions of a dictionary. Inspired by Candès and Tao’s approach, we propose a minimization of the ℓ1-norm of the coefficients in the linear combination under an adaptive Dantzig constraint coming from sharp concentration inequalities. This allows to consider a wide class of dictionaries. Under local or global structure assumptions, oracle inequalities are derived. These theoretical results are transposed...
Gaussian mixture models are widely used to study clustering problems. These model-based clustering methods require an accurate estimation of the unknown data density by Gaussian mixtures. In Maugis and Michel (2009), a penalized maximum likelihood estimator is proposed for automatically selecting the number of mixture components. In the present paper, a collection of univariate densities whose logarithm is locally β-Hölder with moment and tail conditions are considered. We show that this penalized...
Assume that (Xt)t∈Z is a real valued time series
admitting a common marginal density f with respect to Lebesgue's measure. [Donoho et al. Ann. Stat.24 (1996) 508–539] propose near-minimax estimators based on thresholding wavelets to estimate f on a compact set in an independent and identically distributed setting. The aim of the present work is to extend these results to general weak dependent contexts. Weak dependence assumptions are expressed as decreasing bounds of covariance terms and are...
In this paper we are interested in the estimation of a density − defined on a compact interval of ℝ− from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski’s method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated...
We consider the problem of estimating the integral of the square of a density from the observation of a sample. Our method to estimate is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for -statistics of order 2 due to Houdré and Reynaud.
We consider the problem of estimating the integral of the square of a density
f from the observation of a n sample. Our method to estimate is
based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential
inequality for U-statistics of order 2 due to Houdré and Reynaud.
In this paper, we study the problem of non parametric estimation of the stationary marginal density of an or a -mixing process, observed either in continuous time or in discrete time. We present an unified framework allowing to deal with many different cases. We consider a collection of finite dimensional linear regular spaces. We estimate using a projection estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization...
In this paper, we study the problem of non parametric estimation
of the stationary marginal density f of an α or a
β-mixing process, observed either in continuous time or in
discrete time. We present an unified framework allowing to deal
with many different cases. We consider a collection of finite
dimensional linear regular spaces. We estimate f using a
projection estimator built on a data driven selected linear space
among the collection. This data driven choice is performed via the
minimization...
Currently displaying 1 –
20 of
39