One prediction of autoregressive time series
A survey of some recent results on nonparametric on-line estimation is presented. The first result deals with an on-line estimation for a smooth signal S(t) in the classic 'signal plus Gaussian white noise' model. Then an analogous on-line estimator for the regression estimation problem with equidistant design is described and justified. Finally some preliminary results related to the on-line estimation for the diffusion observed process are described.
In this paper we analyse a class of DASP (Digital Alias-free Signal Processing) methods for spectrum estimation of sampled signals. These methods consist in sampling the processed signals at randomly selected time instants. We construct estimators of Fourier transforms of the analysed signals. The estimators are unbiased inside arbitrarily wide frequency ranges, regardless of how sparsely the signal samples are collected. In order to facilitate quality assessment of the estimators, we calculate...
This work deals with a general problem of testing multiple hypotheses about the distribution of a discrete-time stochastic process. Both the Bayesian and the conditional settings are considered. The structure of optimal sequential tests is characterized.
In this article, a general problem of sequential statistical inference for general discrete-time stochastic processes is considered. The problem is to minimize an average sample number given that Bayesian risk due to incorrect decision does not exceed some given bound. We characterize the form of optimal sequential stopping rules in this problem. In particular, we have a characterization of the form of optimal sequential decision procedures when the Bayesian risk includes both the loss due to incorrect...
In the general geometric asset price model, the asset price P(t) at time t satisfies the relation , t ∈ [0,T], where f is a deterministic trend function, the stochastic process F describes the random fluctuations of the market, α is the trend coefficient, and σ denotes the volatility. The paper examines the problem of optimal trend estimation by utilizing the concept of kernel reproducing Hilbert spaces. It characterizes the class of trend functions with the property that the trend coefficient...
The problem of estimating the number, n, of trials, given a sequence of k independent success counts obtained by replicating the n-trial experiment is reconsidered in this paper. In contrast to existing methods it is assumed here that more information than usual is available: not only the numbers of successes are given but also the number of pairs of consecutive successes. This assumption is realistic in a class of problems of spatial statistics. There typically k = 1, in which case the classical...
Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measurement instants. A tuned...
Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...
Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...