Page 1 Next

Displaying 1 – 20 of 88

Showing per page

Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion

Luís Ramos (2010)

Discussiones Mathematicae Probability and Statistics

When a diffusion is ergodic its transition density converges to its invariant density, see Durrett (1998). This convergence enabled us to introduce a sample partitioning technique that gives in each sub-sample, maximum likelihood estimators. The averages of these being a natural choice as estimators. To compare our estimators with the optimal we obtained from martingale estimating functions, see Sørensen (1998), we used the Ornstein-Uhlenbeck process for which exact simulations can be carried out....

Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion

Sandie Souchet Samos (2010)

ESAIM: Probability and Statistics

Let YT = (Yt)t∈[0,T] be a real ergodic diffusion process which drift depends on an unkown parameter θ 0 p . Our aim is to estimate θ0 from a discrete observation of the process YT, (Ykδ)k=0,n, for a fixed and small δ, as T = nδ goes to infinity. For that purpose, we adapt the Generalized Method of Moments (see Hansen) to the anticipative and approximate discrete-time trapezoidal scheme, and then to Simpson's. Under some general assumptions, the trapezoidal scheme (respectively Simpson's scheme)...

Seasonal time series with missing observations

Tomáš Ratinger (1996)

Applications of Mathematics

Popular exponential smoothing methods dealt originally only with equally spaced observations. When time series contains gaps, smoothing constants have to be adjusted. Cipra et al., following Wright’s approach of irregularly spaced observations, have suggested ad hoc modification of smoothing constants for the Holt-Winters smoothing method. In this article the fact that the underlying model of the Holt-Winters method is a certain seasonal ARIMA is used. Minimum mean square error smoothing constants...

Second-order asymptotic expansion for a non-synchronous covariation estimator

Arnak Dalalyan, Nakahiro Yoshida (2011)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers [Bernoulli11 (2005) 359–379, Ann. Inst. Statist. Math.60 (2008) 367–406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition...

Security price modelling by a binomial tree

Remigijus Leipus, Alfredas Račkauskas (1999)

Applicationes Mathematicae

We consider multidimensional tree-based models of arbitrage-free and path-independent security markets. We assume that no riskless investment exists. Contingent claims pricing and hedging problems in such a market are studied.

Selección de la ventana en suavización tipo núcleo de la parte no paramétrica de un modelo parcialmente lineal con errores autorregresivos.

Germán Aneiros Pérez (2000)

Qüestiió

Supongamos que yi = ζiT β + m(ti) + εi, i = 1, ..., n, donde el vector (p x 1) β y la función m(·) son desconocidos, y los errores εi provienen de un proceso autorregresivo de orden uno (AR(1)) estacionario. Discutimos aquí el problema de la selección del parámetro ventana de un estimador tipo núcleo de la función m(·) basado en un estimador Generalizado de Mínimos Cuadrados de β. Obtenemos la expresión asintótica de una ventana óptima y proponemos un método para estimarla, de modo que dé lugar...

Sensitivity analysis in linear models

Shuangzhe Liu, Tiefeng Ma, Yonghui Liu (2016)

Special Matrices

In this work, we consider the general linear model or its variants with the ordinary least squares, generalised least squares or restricted least squares estimators of the regression coefficients and variance. We propose a newly unified set of definitions for local sensitivity for both situations, one for the estimators of the regression coefficients, and the other for the estimators of the variance. Based on these definitions, we present the estimators’ sensitivity results.We include brief remarks...

Shrinkage strategies in some multiple multi-factor dynamical systems

Sévérien Nkurunziza (2012)

ESAIM: Probability and Statistics

In this paper, we are interested in estimation problem for the drift parameters matrices of m independent multivariate diffusion processes. More specifically, we consider the case where the m-parameters matrices are supposed to satisfy some uncertain constraints. Given such an uncertainty, we develop shrinkage estimators which improve over the performance of the maximum likelihood estimator (MLE). Under an asymptotic distributional quadratic risk criterion, we study the relative dominance of the...

Shrinkage strategies in some multiple multi-factor dynamical systems

Sévérien Nkurunziza (2012)

ESAIM: Probability and Statistics

In this paper, we are interested in estimation problem for the drift parameters matrices of m independent multivariate diffusion processes. More specifically, we consider the case where the m-parameters matrices are supposed to satisfy some uncertain constraints. Given such an uncertainty, we develop shrinkage estimators which improve over the performance of the maximum likelihood estimator (MLE). Under an asymptotic distributional quadratic risk criterion, we study the relative dominance of the...

Currently displaying 1 – 20 of 88

Page 1 Next