Page 1 Next

Displaying 1 – 20 of 36

Showing per page

Change point detection in vector autoregression

Zuzana Prášková (2018)

Kybernetika

In the paper a sequential monitoring scheme is proposed to detect instability of parameters in a multivariate autoregressive process. The proposed monitoring procedure is based on the quasi-likelihood scores and the quasi-maximum likelihood estimators of the respective parameters computed from a training sample, and it is designed so that the sequential test has a small probability of a false alarm and asymptotic power one as the size of the training sample is sufficiently large. The asymptotic...

Change-point estimation from indirect observations. 1. Minimax complexity

A. Goldenshluger, A. Juditsky, A. B. Tsybakov, A. Zeevi (2008)

Annales de l'I.H.P. Probabilités et statistiques

We consider the problem of nonparametric estimation of signal singularities from indirect and noisy observations. Here by singularity, we mean a discontinuity (change-point) of the signal or of its derivative. The model of indirect observations we consider is that of a linear transform of the signal, observed in white noise. The estimation problem is analyzed in a minimax framework. We provide lower bounds for minimax risks and propose rate-optimal estimation procedures.

Change-point estimation from indirect observations. 2. Adaptation

A. Goldenshluger, A. Juditsky, A. Tsybakov, A. Zeevi (2008)

Annales de l'I.H.P. Probabilités et statistiques

We focus on the problem of adaptive estimation of signal singularities from indirect and noisy observations. A typical example of such a singularity is a discontinuity (change-point) of the signal or of its derivative. We develop a change-point estimator which adapts to the unknown smoothness of a nuisance deterministic component and to an unknown jump amplitude. We show that the proposed estimator attains optimal adaptive rates of convergence. A simulation study demonstrates reasonable practical...

Combining forecasts using the least trimmed squares

Jan Ámos Víšek (2001)

Kybernetika

Employing recently derived asymptotic representation of the least trimmed squares estimator, the combinations of the forecasts with constraints are studied. Under assumption of unbiasedness of individual forecasts it is shown that the combination without intercept and with constraint imposed on the estimate of regression coefficients that they sum to one, is better than others. A numerical example is included to support theoretical conclusions.

Comportamiento de los contrastes ADF, PP y KPSS al trabajar con series ajustadas de estacionalidad.

Tomás del Barrio Castro, Ana del Sur Mora, Jordi Suriñach Caralt (2001)

Qüestiió

En este trabajo se analiza el comportamiento de los tests de raíces unitarias cuando se utilizan los componentes ciclo-tendencia obtenidos a partir de procedimientos de extracción de señales en lugar de utilizar las series originales. Adicionalmente se intenta detectar las causas finales de los efectos perniciosos observados. Los procedimientos de extracción de señales analizados son el basado en modelos ARIMA y el filtro de líneas aéreas modificado. Un ejercicio de simulación nos permite concluir...

Computational aspects of robust Holt-Winters smoothing based on M -estimation

Christophe Croux, Sarah Gelper, Roland Fried (2008)

Applications of Mathematics

To obtain a robust version of exponential and Holt-Winters smoothing the idea of M -estimation can be used. The difficulty is the formulation of an easy-to-use recursive formula for its computation. A first attempt was made by Cipra (Robust exponential smoothing, J. Forecast. 11 (1992), 57–69). The recursive formulation presented there, however, is unstable. In this paper, a new recursive computing scheme is proposed. A simulation study illustrates that the new recursions result in smaller forecast...

Computational intensive methods for prediction and imputation in time series analysis

Maria Manuela Neves, Clara Cordeiro (2011)

Discussiones Mathematicae Probability and Statistics

One of the main goals in times series analysis is to forecast future values. Many forecasting methods have been developed and the most successful are based on the concept of exponential smoothing, based on the principle of obtaining forecasts as weighted combinations of past observations. Classical procedures to obtain forecast intervals assume a known distribution for the error process, what is not true in many situations. A bootstrap methodology can be used to compute distribution free forecast...

Concatenación temporal de modelos espaciales y su aplicación al estudio de la meningitis en España.

Juan Ferrándiz Ferragud, Ferrán Martínez Navarro, Pilar Sanmartín Fita (2001)

Qüestiió

La cartografía de enfermedades infecciosas en periodos sucesivos plantea la necesidad de su extensión al caso dinámico. En este trabajo proponemos la concatenación temporal de modelos auto-regresivos espaciales para abordar el análisis de mortalidad por meningitis en España en el período 1950-1990 con datos agregados a nivel provincial. Para la estimación v selección del modelo usamos técnicas basadas en la función de verosimilitud.

Currently displaying 1 – 20 of 36

Page 1 Next