Page 1 Next

Displaying 1 – 20 of 27

Showing per page

LAMN property for hidden processes : the case of integrated diffusions

Arnaud Gloter, Emmanuel Gobet (2008)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we prove the Local Asymptotic Mixed Normality (LAMN) property for the statistical model given by the observation of local means of a diffusion process X. Our data are given by ∫01X(s+i)/n dμ(s) for i=0, …, n−1 and the unknown parameter appears in the diffusion coefficient of the process X only. Although the data are neither markovian nor gaussian we can write down, with help of Malliavin calculus, an explicit expression for the log-likelihood of the model, and then study the asymptotic...

Lévy Processes, Saltatory Foraging, and Superdiffusion

J. F. Burrow, P. D. Baxter, J. W. Pitchford (2008)

Mathematical Modelling of Natural Phenomena

It is well established that resource variability generated by spatial patchiness and turbulence is an important influence on the growth and recruitment of planktonic fish larvae. Empirical data show fractal-like prey distributions, and simulations indicate that scale-invariant foraging strategies may be optimal. Here we show how larval growth and recruitment in a turbulent environment can be formulated as a hitting time problem for a jump-diffusion process. We present two theoretical results. Firstly,...

Likelihood for interval-censored observations from multi-state models.

Daniel Commenges (2003)

SORT

We consider the mixed dicrete-continuous pattern of observation in a multi-state model; this is a classical pattern because very often clinical status is assessed at discrete visit times while time of death is observed exactly. The likelihood can easily be written heuristically for such models. However a formal proof is not easy in such observational patterns. We give a rigorous derivation al the likelihood for the illness-death model based on applying Jacod´s formula to an observed bivariate counting...

Limit theorems for stationary Markov processes with L2-spectral gap

Déborah Ferré, Loïc Hervé, James Ledoux (2012)

Annales de l'I.H.P. Probabilités et statistiques

Let ( X t , Y t ) t 𝕋 be a discrete or continuous-time Markov process with state space 𝕏 × d where 𝕏 is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. ( X t , Y t ) t 𝕋 is assumed to be a Markov additive process. In particular, this implies that the first component ( X t ) t 𝕋 is also a Markov process. Markov random walks or additive functionals of a Markov process are special instances of Markov additive processes. In this paper, the process ( Y t ) t 𝕋 is shown to satisfy the...

Linear approximations to some non-linear AR(1) processes

Jiří Anděl (2000)

Kybernetika

Some methods for approximating non-linear AR(1) processes by classical linear AR(1) models are proposed. The quality of approximation is studied in special non-linear AR(1) models by means of comparisons of quality of extrapolation and interpolation in the original models and in their approximations. It is assumed that the white noise has either rectangular or exponential distribution.

Linear prediction of long-range dependent time series

Fanny Godet (2009)

ESAIM: Probability and Statistics

We present two approaches for linear prediction of long-memory time series. The first approach consists in truncating the Wiener-Kolmogorov predictor by restricting the observations to the last k terms, which are the only available data in practice. We derive the asymptotic behaviour of the mean-squared error as k tends to +∞. The second predictor is the finite linear least-squares predictor i.e.  the projection of the forecast value on the last k observations. It is shown that these two predictors...

Local Asymptotic Normality Property for Lacunar Wavelet Series multifractal model

Jean-Michel Loubes, Davy Paindaveine (2011)

ESAIM: Probability and Statistics

We consider a lacunar wavelet series function observed with an additive Brownian motion. Such functions are statistically characterized by two parameters. The first parameter governs the lacunarity of the wavelet coefficients while the second one governs its intensity. In this paper, we establish the local and asymptotic normality (LAN) of the model, with respect to this couple of parameters. This enables to prove the optimality of an estimator for the lacunarity parameter, and to build optimal...

Local Asymptotic Normality Property for Lacunar Wavelet Series multifractal model*

Jean-Michel Loubes, Davy Paindaveine (2012)

ESAIM: Probability and Statistics

We consider a lacunar wavelet series function observed with an additive Brownian motion. Such functions are statistically characterized by two parameters. The first parameter governs the lacunarity of the wavelet coefficients while the second one governs its intensity. In this paper, we establish the local and asymptotic normality (LAN) of the model, with respect to this couple of parameters. This enables to prove the optimality of an estimator for the lacunarity parameter, and to build optimal...

Local estimation of the Hurst index of multifractional brownian motion by increment ratio statistic method

Pierre Raphaël Bertrand, Mehdi Fhima, Arnaud Guillin (2013)

ESAIM: Probability and Statistics

We investigate here the central limit theorem of the increment ratio statistic of a multifractional Brownian motion, leading to a CLT for the time varying Hurst index. The proofs are quite simple relying on Breuer–Major theorems and an original freezing of time strategy. A simulation study shows the goodness of fit of this estimator.

Local superefficiency of data-driven projection density estimators in continuous time.

Denis Bosq, Delphine Blanke (2004)

SORT

We construct a data-driven projection density estimator for continuous time processes. This estimator reaches superoptimal rates over a class F0 of densities that is dense in the family of all possible densities, and a «reasonable» rate elsewhere. The class F0 may be chosen previously by the analyst. Results apply to Rd-valued processes and to N-valued processes. In the particular case where square-integrable local time does exist, it is shown that our estimator is strictly better than the local...

Locally weighted neural networks for an analysis of the biosensor response

Romas Baronas, Feliksas Ivanauskas, Romualdas Maslovskis, Marijus Radavičius, Pranas Vaitkus (2007)

Kybernetika

This paper presents a semi-global mathematical model for an analysis of a signal of amperometric biosensors. Artificial neural networks were applied to an analysis of the biosensor response to multi-component mixtures. A large amount of the learning and test data was synthesized using computer simulation of the biosensor response. The biosensor signal was analyzed with respect to the concentration of each component of the mixture. The paradigm of locally weighted linear regression was used for retraining...

Currently displaying 1 – 20 of 27

Page 1 Next