Page 1 Next

Displaying 1 – 20 of 47

Showing per page

M -estimation in nonlinear regression for longitudinal data

Martina Orsáková (2007)

Kybernetika

The longitudinal regression model Z i j = m ( θ 0 , 𝕏 i ( T i j ) ) + ε i j , where Z i j is the j th measurement of the i th subject at random time T i j , m is the regression function, 𝕏 i ( T i j ) is a predictable covariate process observed at time T i j and ε i j is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth M -estimator of unknown parameter θ 0 .

Minimax and bayes estimation in deconvolution problem*

Mikhail Ermakov (2008)

ESAIM: Probability and Statistics

We consider a deconvolution problem of estimating a signal blurred with a random noise. The noise is assumed to be a stationary Gaussian process multiplied by a weight function function εh where h ∈ L2(R1) and ε is a small parameter. The underlying solution is assumed to be infinitely differentiable. For this model we find asymptotically minimax and Bayes estimators. In the case of solutions having finite number of derivatives similar results were obtained in [G.K. Golubev and R.Z. Khasminskii,...

Minimax results for estimating integrals of analytic processes

Karim Benhenni, Jacques Istas (2010)

ESAIM: Probability and Statistics

The problem of predicting integrals of stochastic processes is considered. Linear estimators have been constructed by means of samples at N discrete times for processes having a fixed Hölderian regularity s > 0 in quadratic mean. It is known that the rate of convergence of the mean squared error is of order N-(2s+1). In the class of analytic processes Hp, p ≥ 1, we show that among all estimators, the linear ones are optimal. Moreover, using optimal coefficient estimators derived through...

Minimum distance estimator for a hyperbolic stochastic partial differentialequation

Vincent Monsan, Modeste N'zi (2000)

Applicationes Mathematicae

We study a minimum distance estimator in L 2 -norm for a class ofnonlinear hyperbolic stochastic partial differential equations, driven by atwo-parameter white noise. The consistency and asymptotic normality of thisestimator are established under some regularity conditions on thecoefficients. Our results are applied to the two-parameterOrnstein-Uhlenbeck process.

Currently displaying 1 – 20 of 47

Page 1 Next