Page 1 Next

Displaying 1 – 20 of 33

Showing per page

Pairs of successes in Bernoulli trials and a new n-estimator for the binomial distribution

Wolfgang Kühne, Peter Neumann, Dietrich Stoyan, Helmut Stoyan (1994)

Applicationes Mathematicae

The problem of estimating the number, n, of trials, given a sequence of k independent success counts obtained by replicating the n-trial experiment is reconsidered in this paper. In contrast to existing methods it is assumed here that more information than usual is available: not only the numbers of successes are given but also the number of pairs of consecutive successes. This assumption is realistic in a class of problems of spatial statistics. There typically k = 1, in which case the classical...

Parametric inference for mixed models defined by stochastic differential equations

Sophie Donnet, Adeline Samson (2008)

ESAIM: Probability and Statistics

Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measurement instants. A tuned...

Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2011)

ESAIM: Probability and Statistics

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...

Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2012)

ESAIM: Probability and Statistics

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...

Periodic autoregression with exogenous variables and periodic variances

Jiří Anděl (1989)

Aplikace matematiky

The periodic autoregressive process with non-vanishing mean and with exogenous variables is investigated in the paper. It is assumed that the model has also periodic variances. The statistical analysis is based on the Bayes approach with a vague prior density. Estimators of the parameters and asymptotic tests of hypotheses are derived.

Periodic moving average process

Tomáš Cipra (1985)

Aplikace matematiky

Periodic moving average processes are representatives of the class of periodic models suitable for the description of some seasonal time series and for the construction of multivariate moving average models. The attention having been lately concentrated mainly on periodic autoregressions, some methods of statistical analysis of the periodic moving average processes are suggested in the paper. These methods include the estimation procedure (based on Durbin's construction of the parameter estimators...

Piecewise approximation and neural networks

Martina Révayová, Csaba Török (2007)

Kybernetika

The paper deals with the recently proposed autotracking piecewise cubic approximation (APCA) based on the discrete projective transformation, and neural networks (NN). The suggested new approach facilitates the analysis of data with complex dependence and relatively small errors. We introduce a new representation of polynomials that can provide different local approximation models. We demonstrate how APCA can be applied to especially noisy data thanks to NN and local estimations. On the other hand,...

Planar anisotropy revisited

Viktor Beneš, Arun M. Gokhale (2000)

Kybernetika

The paper concerns estimation of anisotropy of planar fibre systems using the relation between the rose of directions and the rose of intersections. The discussion about the properties of the Steiner compact estimator is based on both theoretical and simulation results. The approach based on the distribution of the Prokhorov distance between the estimated and true rose of directions is developed. Finally the curved test systems are investigated in both Fourier and Steiner compact analysis of anisotropy....

Plug-in estimators for higher-order transition densities in autoregression

Anton Schick, Wolfgang Wefelmeyer (2009)

ESAIM: Probability and Statistics

In this paper we obtain root-n consistency and functional central limit theorems in weighted L1-spaces for plug-in estimators of the two-step transition density in the classical stationary linear autoregressive model of order one, assuming essentially only that the innovation density has bounded variation. We also show that plugging in a properly weighted residual-based kernel estimator for the unknown innovation density improves on plugging in an unweighted residual-based kernel estimator....

Poisson sampling for spectral estimation in periodically correlated processes

Vincent Monsan (1994)

Applicationes Mathematicae

We study estimation problems for periodically correlated, non gaussian processes. We estimate the correlation functions and the spectral densities from continuous-time samples. From a random time sample, we construct three types of estimators for the spectral densities and we prove their consistency.

Polynomial deviation bounds for recurrent Harris processes having general state space

Eva Löcherbach, Dasha Loukianova (2013)

ESAIM: Probability and Statistics

Consider a strong Markov process in continuous time, taking values in some Polish state space. Recently, Douc et al. [Stoc. Proc. Appl. 119, (2009) 897–923] introduced verifiable conditions in terms of a supermartingale property implying an explicit control of modulated moments of hitting times. We show how this control can be translated into a control of polynomial moments of abstract regeneration times which are obtained by using the regeneration method of Nummelin, extended to the time-continuous...

Prediction of time series by statistical learning: general losses and fast rates

Pierre Alquier, Xiaoyin Li, Olivier Wintenberger (2013)

Dependence Modeling

We establish rates of convergences in statistical learning for time series forecasting. Using the PAC-Bayesian approach, slow rates of convergence √ d/n for the Gibbs estimator under the absolute loss were given in a previous work [7], where n is the sample size and d the dimension of the set of predictors. Under the same weak dependence conditions, we extend this result to any convex Lipschitz loss function. We also identify a condition on the parameter space that ensures similar rates for the...

Prediction problems related to a first-order autoregressive process in the presence of outliers

Sugata Sen Roy, Sourav Chakraborty (2006)

Applicationes Mathematicae

Outliers in a time series often cause problems in fitting a suitable model to the data. Hence predictions based on such models are liable to be erroneous. In this paper we consider a stable first-order autoregressive process and suggest two methods of substituting an outlier by imputed values and then predicting on the basis of it. The asymptotic properties of both the process parameter estimators and the predictors are also studied.

Currently displaying 1 – 20 of 33

Page 1 Next