Two algorithms based on Markov chains and their application to recognition of protein coding genes in prokaryotic genomes
Methods based on the theory of Markov chains are most commonly used in the recognition of protein coding sequences. However, they require big learning sets to fill up all elements in transition probability matrices describing dependence between nucleotides in the analyzed sequences. Moreover, gene prediction is strongly influenced by the nucleotide bias measured by e.g. G+C content. In this paper we compare two methods: (i) the classical GeneMark algorithm, which uses a three-periodic non-homogeneous...