Page 1

Displaying 1 – 4 of 4

Showing per page

Neuromorphic features of probabilistic neural networks

Jiří Grim (2007)

Kybernetika

We summarize the main results on probabilistic neural networks recently published in a series of papers. Considering the framework of statistical pattern recognition we assume approximation of class-conditional distributions by finite mixtures of product components. The probabilistic neurons correspond to mixture components and can be interpreted in neurophysiological terms. In this way we can find possible theoretical background of the functional properties of neurons. For example, the general...

Node assignment problem in Bayesian networks

Joanna Polanska, Damian Borys, Andrzej Polanski (2006)

International Journal of Applied Mathematics and Computer Science

This paper deals with the problem of searching for the best assignments of random variables to nodes in a Bayesian network (BN) with a given topology. Likelihood functions for the studied BNs are formulated, methods for their maximization are described and, finally, the results of a study concerning the reliability of revealing BNs' roles are reported. The results of BN node assignments can be applied to problems of the analysis of gene expression profiles.

Nonparametric bivariate estimation for successive survival times.

Carles Serrat, Guadalupe Gómez (2007)

SORT

Several aspects of the analysis of two successive survival times are considered. All the analyses take into account the dependent censoring on the second time induced by the first. Three nonparametric methods are described, implemented and applied to the data coming from a multicentre clinical trial for HIV-infected patients. Visser's and Wang and Wells methods propose an estimator for the bivariate survival function while Gómez and Serrat's method presents a conditional approach for the second...

Currently displaying 1 – 4 of 4

Page 1