Some measures of the amount of information for the linear regression model.
The development of functional-structural plant models has opened interesting perspectives for a better understanding of plant growth as well as for potential applications in breeding or decision aid in farm management. Parameterization of such models is however a difficult issue due to the complexity of the involved biological processes and the interactions between these processes. The estimation of parameters from experimental data by inverse methods...
We develop a class of non-life reserving models using a stable-1/2 random bridge to simulate the accumulation of paid claims, allowing for an essentially arbitrary choice of a priori distribution for the ultimate loss. Taking an information-based approach to the reserving problem, we derive the process of the conditional distribution of the ultimate loss. The "best-estimate ultimate loss process" is given by the conditional expectation of the ultimate loss. We derive explicit expressions for the...
Let be a parabolic second order differential operator on the domain Given a function and such that the support of is contained in , we let be the solution to the equation:Given positive bounds we seek a function with support in such that the corresponding solution satisfies:We prove in this article that, under some regularity conditions on the coefficients of continuous solutions are unique and dense in the sense that can be -approximated, but an exact solution does not...
Let L be a parabolic second order differential operator on the domain Given a function and such that the support of û is contained in , we let be the solution to the equation: Given positive bounds we seek a function u with support in such that the corresponding solution y satisfies: We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that can be C0-approximated, but an exact solution...
This paper deals with an application of regression analysis to the regulation of the blood-sugar under diabetes mellitus. Section 2 gives a description of Gram-Schmidt orthogonalization, while Section 3 discusses the difference between Gauss-Markov estimation and Least Squares Estimation. Section 4 is devoted to the statistical analysis of the blood-sugar during the night. The response change of blood-sugar is explained by three variables: time, food and physical activity ("Bewegung"). At the beginning...
Generalizations of the additive hazards model are considered. Estimates of the regression parameters and baseline function are proposed, when covariates are random. The asymptotic properties of estimators are considered.