Page 1 Next

Displaying 1 – 20 of 29

Showing per page

Parametric inference for mixed models defined by stochastic differential equations

Sophie Donnet, Adeline Samson (2008)

ESAIM: Probability and Statistics

Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measurement instants. A tuned...

Pattern-mixture models

Geert Molenberghs, Herbert Thijs, Bart Michiels, Geert Verbeke, Michael G. Kenward (2004)

Journal de la société française de statistique

Performance of hedging strategies in interval models

Berend Roorda, Jacob Engwerda, Johannes M. Schumacher (2005)

Kybernetika

For a proper assessment of risks associated with the trading of derivatives, the performance of hedging strategies should be evaluated not only in the context of the idealized model that has served as the basis of strategy development, but also in the context of other models. In this paper we consider the class of so-called interval models as a possible testing ground. In the context of such models the fair price of a derivative contract is not uniquely determined and we characterize the interval...

Polynomial chaos in evaluating failure probability: A comparative study

Eliška Janouchová, Jan Sýkora, Anna Kučerová (2018)

Applications of Mathematics

Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial...

Population genetics models for the statistics of DNA samples under different demographic scenarios - Maximum likelihood versus approximate methods

Andrzej Polański, Marek Kimmel (2003)

International Journal of Applied Mathematics and Computer Science

The paper reviews the basic mathematical methodology of modeling neutral genetic evolution, including the statistics of the Fisher-Wright process, models of mutation and the coalescence method under various demographic scenarios. The basic approach is the use of maximum likelihood techniques. However, due to computational problems, intuitive or approximate methods are also of great importance.

Prediction of time series by statistical learning: general losses and fast rates

Pierre Alquier, Xiaoyin Li, Olivier Wintenberger (2013)

Dependence Modeling

We establish rates of convergences in statistical learning for time series forecasting. Using the PAC-Bayesian approach, slow rates of convergence √ d/n for the Gibbs estimator under the absolute loss were given in a previous work [7], where n is the sample size and d the dimension of the set of predictors. Under the same weak dependence conditions, we extend this result to any convex Lipschitz loss function. We also identify a condition on the parameter space that ensures similar rates for the...

Premium evaluation for different loss distributions using utility theory

Harman Preet Singh Kapoor, Kanchan Jain (2011)

Discussiones Mathematicae Probability and Statistics

For any insurance contract to be mutually advantageous to the insurer and the insured, premium setting is an important task for an actuary. The maximum premium ( P m a x ) that an insured is willing to pay can be determined using utility theory. The main focus of this paper is to determine P m a x by considering different forms of the utility function. The loss random variable is assumed to follow different Statistical distributions viz Gamma, Beta, Exponential, Pareto, Weibull, Lognormal and Burr. The theoretical...

Pre-symptomatic Influenza Transmission, Surveillance, and School Closings: Implications for Novel Influenza A (H1N1)

G. F. Webb, Y-H. Hsieh, J. Wu, M. J. Blaser (2010)

Mathematical Modelling of Natural Phenomena

Early studies of the novel swine-origin 2009 influenza A (H1N1) epidemic indicate clinical attack rates in children much higher than in adults. Non-medical interventions such as school closings are constrained by their large socio-economic costs. Here we develop a mathematical model to ascertain the roles of pre-symptomatic influenza transmission as well as symptoms surveillance of children to assess the utility of school closures. Our model analysis...

Pricing bonds and CDS in the model with rating migration induced by a Cox process

Jacek Jakubowski, Mariusz Niewęgłowski (2008)

Banach Center Publications

We investigate the properties of a rating migration process assuming that it is given by subordination of a discrete time Markov chain and a Cox process. The problem of pricing of defaultable bonds with fractional recovery of par value with rating migration and credit default swaps is considered. As an example of applications of our results, we give an explicit solution to the pricing problem in a model with short rate and intensity processes given by the solution of a two-dimensional Ornstein-Uhlenbeck...

Currently displaying 1 – 20 of 29

Page 1 Next