Solving initial-boundary value problems for coupled systems of partial differential equations
Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.
The inverse Fast Fourier Transform is a common procedure to solve a convolution equation provided the transfer function has no zeros on the unit circle. In our paper we generalize this method to the case of a singular convolution equation and prove that if the transfer function is a trigonometric polynomial with simple zeros on the unit circle, then this method can be extended.
A finite iteration method for solving systems of (max, min)-linear equations is presented. The systems have variables on both sides of the equations. The algorithm has polynomial complexity and may be extended to wider classes of equations with a similar structure.
The Cahn-Hilliard variational inequality is a non-standard parabolic variational inequality of fourth order for which straightforward numerical approaches cannot be applied. We propose a primal-dual active set method which can be interpreted as a semi-smooth Newton method as solution technique for the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler discretization is used in time and a piecewise linear finite element discretization of splitting type is used in space leading...
The Cahn-Hilliard variational inequality is a non-standard parabolic variational inequality of fourth order for which straightforward numerical approaches cannot be applied. We propose a primal-dual active set method which can be interpreted as a semi-smooth Newton method as solution technique for the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler discretization is used in time and a piecewise linear finite element discretization of splitting type is used in space...