Displaying 221 – 240 of 758

Showing per page

Solvability and numerical algorithms for a class of variational data assimilation problems

Guri Marchuk, Victor Shutyaev (2002)

ESAIM: Control, Optimisation and Calculus of Variations

A class of variational data assimilation problems on reconstructing the initial-value functions is considered for the models governed by quasilinear evolution equations. The optimality system is reduced to the equation for the control function. The properties of the control equation are studied and the solvability theorems are proved for linear and quasilinear data assimilation problems. The iterative algorithms for solving the problem are formulated and justified.

Solvability and numerical algorithms for a class of variational data assimilation problems

Guri Marchuk, Victor Shutyaev (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A class of variational data assimilation problems on reconstructing the initial-value functions is considered for the models governed by quasilinear evolution equations. The optimality system is reduced to the equation for the control function. The properties of the control equation are studied and the solvability theorems are proved for linear and quasilinear data assimilation problems. The iterative algorithms for solving the problem are formulated and justified.

Solvability classes for core problems in matrix total least squares minimization

Iveta Hnětynková, Martin Plešinger, Jana Žáková (2019)

Applications of Mathematics

Linear matrix approximation problems A X B are often solved by the total least squares minimization (TLS). Unfortunately, the TLS solution may not exist in general. The so-called core problem theory brought an insight into this effect. Moreover, it simplified the solvability analysis if B is of column rank one by extracting a core problem having always a unique TLS solution. However, if the rank of B is larger, the core problem may stay unsolvable in the TLS sense, as shown for the first time by Hnětynková,...

Solvability of the power flow problem in DC overhead wire circuit modeling

Jakub Ševčík, Lukáš Adam, Jan Přikryl, Václav Šmídl (2021)

Applications of Mathematics

Proper traffic simulation of electric vehicles, which draw energy from overhead wires, requires adequate modeling of traction infrastructure. Such vehicles include trains, trams or trolleybuses. Since the requested power demands depend on a traffic situation, the overhead wire DC electrical circuit is associated with a non-linear power flow problem. Although the Newton-Raphson method is well-known and widely accepted for seeking its solution, the existence of such a solution is not guaranteed. Particularly...

Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods

Mohsen Mehrali-Varjani, Mostafa Shamsi, Alaeddin Malek (2018)

Kybernetika

This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) problem which appears in feedback solution of the optimal control problems. In this method, first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to a system of ordinary differential equations with terminal conditions. Second, the time-marching Runge-Kutta method is used to solve the corresponding system of differential equations. Then, an approximate solution for the HJB problem...

Solving a class of multivariate integration problems via Laplace techniques

Jean B. Lasserre, Eduardo S. Zeron (2001)

Applicationes Mathematicae

We consider the problem of calculating a closed form expression for the integral of a real-valued function f:ℝⁿ → ℝ on a set S. We specialize to the particular cases when S is a convex polyhedron or an ellipsoid, and the function f is either a generalized polynomial, an exponential of a linear form (including trigonometric polynomials) or an exponential of a quadratic form. Laplace transform techniques allow us to obtain either a closed form expression, or a series representation that can be handled...

Solving convex program via Lagrangian decomposition

Matthias Knobloch (2004)

Kybernetika

We consider general convex large-scale optimization problems in finite dimensions. Under usual assumptions concerning the structure of the constraint functions, the considered problems are suitable for decomposition approaches. Lagrangian-dual problems are formulated and solved by applying a well-known cutting-plane method of level-type. The proposed method is capable to handle infinite function values. Therefore it is no longer necessary to demand the feasible set with respect to the non-dualized...

Solving Differential Equations by Parallel Laplace Method with Assured Accuracy

Malaschonok, Natasha (2007)

Serdica Journal of Computing

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006We produce a parallel algorithm realizing the Laplace transform method for the symbolic solving of differential equations. In this paper we consider systems of ordinary linear differential equations with constant coefficients, nonzero initial conditions and right-hand parts reduced to sums of exponents with polynomial coefficients.

Currently displaying 221 – 240 of 758