The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 721 –
740 of
1956
In current textbooks the use of Chebyshev nodes with Newton interpolation is advocated as the most efficient numerical interpolation method in terms of approximation accuracy and computational effort. However, we show numerically that the approximation quality obtained by Newton interpolation with Fast Leja (FL) points is competitive to the use of Chebyshev nodes, even for extremely high degree interpolation. This is an experimental account of the analytic result that the limit distribution of FL...
The results of a workshop concerning the numerical simulation of the liquid flow around a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed to investigate the capabilities of different compressible flow solvers for the low Mach number regime and for flows in which incompressible and supersonic regions are simultaneously present. Different physical models...
The results of a workshop concerning the numerical
simulation of the liquid flow around a hydrofoil in non-cavitating and
cavitating conditions are presented. This workshop was part of the
conference “Mathematical and Numerical aspects of Low Mach Number
Flows” (2004) and was aimed to investigate the capabilities of
different compressible flow solvers for the low Mach number regime and for
flows in which incompressible and supersonic regions are
simultaneously present. Different physical models...
In this paper, we present extensive numerical tests showing the performance
and robustness of a Balancing Neumann-Neumann method for the solution of algebraic linear systems arising from hp finite element approximations of scalar elliptic
problems on geometrically refined boundary layer meshes in
three dimensions. The numerical results are in good agreement with the theoretical bound for the condition number of the preconditioned operator derived in [Toselli and Vasseur, IMA J. Numer. Anal.24 (2004)...
The strictly convex quadratic programming problem is transformed to the least distance problem - finding the solution of minimum norm to the system of linear inequalities. This problem is equivalent to the linear least squares problem on the positive orthant. It is solved using orthogonal transformations, which are memorized as products. Like in the revised simplex method, an auxiliary matrix is used for computations. Compared to the modified-simplex type methods, the presented dual algorithm QPLS...
This paper is motivated by the paper [3], where an iterative method for the computation of a matrix inverse square root was considered. We suggest a generalization of the method in [3]. We give some sufficient conditions for the convergence of this method, and its numerical stabillity property is investigated. Numerical examples showing that sometimes our generalization converges faster than the methods in [3] are presented.
We discuss the formulation of a simulator in three spatial dimensions for a multicomponent, two phase (air, water) system of groundwater flow and transport with biodegradation kinetics and wells with multiple screens. The simulator has been developed for parallel, distributed memory, message passing machines. The numerical procedures employed are a fully implicit expanded mixed finite element method for flow and either a characteristics-mixed method or a Godunov method for transport and reactions...
In the present work we describe HPEC (High Performance Eigenvalues Computation), a parallel software package for the evaluation of some eigenvalues of a large sparse symmetric matrix. It implements an efficient and portable Block Lanczos algorithm for distributed memory multicomputers. HPEC is based on basic linear algebra operations for sparse and dense matrices, some of which have been derived by ScaLAPACK library modules. Numerical experiments have been carried out to evaluate HPEC performance...
In this paper, we present a parallel scheme to solve the population balance equations based on the method of characteristics and the finite element discretization. The application of the method of characteristics transform the higher dimensional population balance equation into a series of lower dimensional convection-diffusion-reaction equations which can be solved in a parallel way. Some numerical results are presented to show the accuracy and efficiency.
Currently displaying 721 –
740 of
1956