Displaying 121 – 140 of 196

Showing per page

L∞(L2) and L∞(L∞) error estimates for mixed methods for integro-differential equations of parabolic type

Ziwen Jiang (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Error estimates in L∞(0,T;L2(Ω)), L∞(0,T;L2(Ω)2), L∞(0,T;L∞(Ω)), L∞(0,T;L∞(Ω)2), Ω in 2 , are derived for a mixed finite element method for the initial-boundary value problem for integro-differential equation u t = div { a u + 0 t b 1 u d τ + 0 t 𝐜 u d τ } + f based on the Raviart-Thomas space Vh x Wh ⊂ H(div;Ω) x L2(Ω). Optimal order estimates are obtained for the approximation of u,ut in L∞(0,T;L2(Ω)) and the associated velocity p in L∞(0,T;L2(Ω)2), divp in L∞(0,T;L2(Ω)). Quasi-optimal order estimates are obtained for the approximation...

Local accuracy in finite element analysis using curved isoparametric elements

Pranjal Saxena, Chandra Shekhar Upadhyay (2025)

Applications of Mathematics

The finite element method (FEM) is popularly used for numerically approximating PDE(s) over complicated domains due to its rich mathematical background, versatility, and ease of implementation. In this article, we investigate one of its important features, i.e., the approximation of PDE(s) over nonpolygonal Lipschitz domains by higher-order simplicial elements in 2D and 3D. This important issue is not well understood and often ignored by engineers due to its mathematical complexity, i.e., the FEM...

Local analysis of a cubically convergent method for variational inclusions

Steeve Burnet, Alain Pietrus (2011)

Applicationes Mathematicae

This paper deals with variational inclusions of the form 0 ∈ φ(x) + F(x) where φ is a single-valued function admitting a second order Fréchet derivative and F is a set-valued map from q to the closed subsets of q . When a solution z̅ of the previous inclusion satisfies some semistability properties, we obtain local superquadratic or cubic convergent sequences.

Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions

Ioannis K. Argyros, Santhosh George (2019)

Commentationes Mathematicae Universitatis Carolinae

A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.

Currently displaying 121 – 140 of 196