Displaying 141 – 160 of 198

Showing per page

Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation∗

Huangxin Chen, Ronald H.W. Hoppe, Xuejun Xu (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...

Uniform Convergence of the Newton Method for Aubin Continuous Maps

Dontchev, Asen (1996)

Serdica Mathematical Journal

* This work was supported by National Science Foundation grant DMS 9404431.In this paper we prove that the Newton method applied to the generalized equation y ∈ f(x) + F(x) with a C^1 function f and a set-valued map F acting in Banach spaces, is locally convergent uniformly in the parameter y if and only if the map (f +F)^(−1) is Aubin continuous at the reference point. We also show that the Aubin continuity actually implies uniform Q-quadratic convergence provided that the derivative of f is Lipschitz...

Uniform decompositions of polytopes

Daniel Berend, Luba Bromberg (2006)

Applicationes Mathematicae

We design a method of decomposing convex polytopes into simpler polytopes. This decomposition yields a way of calculating exactly the volume of the polytope, or, more generally, multiple integrals over the polytope, which is equivalent to the way suggested in Schechter, based on Fourier-Motzkin elimination (Schrijver). Our method is applicable for finding uniform decompositions of certain natural families of polytopes. Moreover, this allows us to find algorithmically an analytic expression for the...

Uniform stabilization of a viscous numerical approximation for a locally damped wave equation

Arnaud Münch, Ademir Fernando Pazoto (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This work is devoted to the analysis of a viscous finite-difference space semi-discretization of a locally damped wave equation in a regular 2-D domain. The damping term is supported in a suitable subset of the domain, so that the energy of solutions of the damped continuous wave equation decays exponentially to zero as time goes to infinity. Using discrete multiplier techniques, we prove that adding a suitable vanishing numerical viscosity term leads to a uniform (with respect to the mesh size)...

Uniformly convergent adaptive methods for a class of parametric operator equations∗

Claude Jeffrey Gittelson (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive and analyze adaptive solvers for boundary value problems in which the differential operator depends affinely on a sequence of parameters. These methods converge uniformly in the parameters and provide an upper bound for the maximal error. Numerical computations indicate that they are more efficient than similar methods that control the error in a mean square sense.

Uniformly convergent adaptive methods for a class of parametric operator equations∗

Claude Jeffrey Gittelson (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive and analyze adaptive solvers for boundary value problems in which the differential operator depends affinely on a sequence of parameters. These methods converge uniformly in the parameters and provide an upper bound for the maximal error. Numerical computations indicate that they are more efficient than similar methods that control the error in a mean square sense.

Uniformly enclosing discretization methods and grid generation for semilinear boundary value problems with first order terms

Hans-Görg Roos (1989)

Aplikace matematiky

The paper deals with uniformly enclosing discretization methods of the first order for semilinear boundary value problems. Some fundamental properties of this discretization technique (the enclosing property, convergence, the inverse-monotonicity) are proved. A feedback grid generation principle using information from the lower and upper solutions is presented.

Uniformly exponentially or polynomially stable approximations for second order evolution equations and some applications

Farah Abdallah, Serge Nicaise, Julie Valein, Ali Wehbe (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the approximation of second order evolution equations. It is well known that the approximated system by finite element or finite difference is not uniformly exponentially or polynomially stable with respect to the discretization parameter, even if the continuous system has this property. Our goal is to damp the spurious high frequency modes by introducing numerical viscosity terms in the approximation scheme. With these viscosity terms, we show the exponential or polynomial...

Currently displaying 141 – 160 of 198