Displaying 161 – 180 of 566

Showing per page

Composite grid finite element method: Implementation and iterative solution with inexact subproblems

Radim Blaheta, P. Byczanski, Roman Kohut (2002)

Applications of Mathematics

This paper concerns the composite grid finite element (FE) method for solving boundary value problems in the cases which require local grid refinement for enhancing the approximating properties of the corresponding FE space. A special interest is given to iterative methods based on natural decomposition of the space of unknowns and to the implementation of both the composite grid FEM and the iterative procedures for its solution. The implementation is important for gaining all benefits of the described...

Compositional models, Bayesian models and recursive factorization models

Francesco M. Malvestuto (2016)

Kybernetika

Compositional models are used to construct probability distributions from lower-order probability distributions. On the other hand, Bayesian models are used to represent probability distributions that factorize according to acyclic digraphs. We introduce a class of models, called recursive factorization models, to represent probability distributions that recursively factorize according to sequences of sets of variables, and prove that they have the same representation power as both compositional...

Compressible two-phase flows by central and upwind schemes

Smadar Karni, Eduard Kirr, Alexander Kurganov, Guergana Petrova (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.

Compressible two-phase flows by central and upwind schemes

Smadar Karni, Eduard Kirr, Alexander Kurganov, Guergana Petrova (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.

Computation of 3D vertex singularities for linear elasticity : error estimates for a finite element method on graded meshes

Thomas Apel, Anna-Margarete Sändig, Sergey I. Solov'ev (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the computation of 3D vertex singularities of anisotropic elastic fields with Dirichlet boundary conditions, focusing on the derivation of error estimates for a finite element method on graded meshes. The singularities are described by eigenpairs of a corresponding operator pencil on spherical polygonal domains. The main idea is to introduce a modified quadratic variational boundary eigenvalue problem which consists of two self-adjoint, positive definite sesquilinear...

Computation of 3D vertex singularities for linear elasticity: Error estimates for a finite element method on graded meshes

Thomas Apel, Anna-Margarete Sändig, Sergey I. Solov'ev (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the computation of 3D vertex singularities of anisotropic elastic fields with Dirichlet boundary conditions, focusing on the derivation of error estimates for a finite element method on graded meshes. The singularities are described by eigenpairs of a corresponding operator pencil on spherical polygonal domains. The main idea is to introduce a modified quadratic variational boundary eigenvalue problem which consists of two self-adjoint, positive definite sesquilinear...

Computation of bifurcated branches in a free boundary problem arising in combustion theory

Olivier Baconneau, Claude-Michel Brauner, Alessandra Lunardi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a parabolic 2D Free Boundary Problem, with jump conditions at the interface. Its planar travelling-wave solutions are orbitally stable provided the bifurcation parameter u * does not exceed a critical value u * c . The latter is the limit of a decreasing sequence ( u * k ) of bifurcation points. The paper deals with the study of the 2D bifurcated branches from the planar branch, for small k. Our technique is based on the elimination of the unknown front, turning the problem into a fully nonlinear...

Currently displaying 161 – 180 of 566