Displaying 261 – 280 of 744

Showing per page

Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence

Abdel Berkaoui, Mireille Bossy, Awa Diop (2008)

ESAIM: Probability and Statistics

We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form | x | α , α [ 1 / 2 , 1 ) . In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.

Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence

Abdel Berkaoui, Mireille Bossy, Awa Diop (2007)

ESAIM: Probability and Statistics

We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form |x|α, α ∈ [1/2,1). In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.

Euler schemes and half-space approximation for the simulation of diffusion in a domain

Emmanuel Gobet (2001)

ESAIM: Probability and Statistics

This paper is concerned with the problem of simulation of ( X t ) 0 t T , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D : namely, we consider the case where the boundary D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [ 0 , T ] , we propose new discretization schemes: they are fully implementable and provide a weak error of order N - 1 under some conditions. The construction...

Euler schemes and half-space approximation for the simulation of diffusion in a domain

Emmanuel Gobet (2010)

ESAIM: Probability and Statistics

This paper is concerned with the problem of simulation of (Xt)0≤t≤T, the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D: namely, we consider the case where the boundary ∂D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [0,T], we propose new discretization schemes: they are fully implementable and provide a weak error of order N-1 under some conditions....

Euler's Approximations of Weak Solutions of Reflecting SDEs with Discontinuous Coefficients

Alina Semrau (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

We study convergence in law for the Euler and Euler-Peano schemes for stochastic differential equations reflecting on the boundary of a general convex domain. We assume that the coefficients are measurable and continuous almost everywhere with respect to the Lebesgue measure. The proofs are based on new estimates of Krylov's type for the approximations considered.

Exact simulation for solutions of one-dimensional Stochastic Differential Equations with discontinuous drift

Pierre Étoré, Miguel Martinez (2014)

ESAIM: Probability and Statistics

In this note we propose an exact simulation algorithm for the solution of (1) d X t = d W t + b ¯ ( X t ) d t , X 0 = x , d X t = d W t + b̅ ( X t ) d t,   X 0 = x, where b ¯ b̅is a smooth real function except at point 0 where b ¯ ( 0 + ) b ¯ ( 0 - ) b̅(0 + ) ≠ b̅(0 −) . The main idea is to sample an exact skeleton of Xusing an algorithm deduced from the convergence of the solutions of the skew perturbed equation (2) d X t β = d W t + b ¯ ( X t β ) d t + β d L t 0 ( X β ) , X 0 = x d X t β = d W t + b̅ ( X t β ) d t + β d L t 0 ( X β ) ,   X 0 = x towardsX solution of (1) as β ≠ 0 tends to 0. In this note, we show that this convergence...

Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process

Benjamin Jourdain, Tony Lelièvre, Raphaël Roux (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a free energy computation procedure, introduced in [Darve and Pohorille, J. Chem. Phys.115 (2001) 9169–9183; Hénin and Chipot, J. Chem. Phys.121 (2004) 2904–2914], which relies on the long-time behavior of a nonlinear stochastic differential equation. This nonlinearity comes from a conditional expectation computed with respect to one coordinate of the solution. The long-time convergence of the solutions to this equation has been proved in [Lelièvre et al., Nonlinearity21 (2008) 1155–1181],...

Exponential inequalities for VLMC empirical trees

Antonio Galves, Véronique Maume-Deschamps, Bernard Schmitt (2008)

ESAIM: Probability and Statistics

A seminal paper by Rissanen, published in 1983, introduced the class of Variable Length Markov Chains and the algorithm Context which estimates the probabilistic tree generating the chain. Even if the subject was recently considered in several papers, the central question of the rate of convergence of the algorithm remained open. This is the question we address here. We provide an exponential upper bound for the probability of incorrect estimation of the probabilistic tree, as a function...

Exponential smoothing and resampling techniques in time series prediction

Maria Manuela Neves, Clara Cordeiro (2010)

Discussiones Mathematicae Probability and Statistics

Time series analysis deals with records that are collected over time. The objectives of time series analysis depend on the applications, but one of the main goals is to predict future values of the series. These values depend, usually in a stochastic manner, on the observations available at present. Such dependence has to be considered when predicting the future from its past, taking into account trend, seasonality and other features of the data. Some of the most successful forecasting methods are...

Extremal behaviour of stationary processes: the calibration technique in the extremal index estimation

D. Prata Gomes, Maria Manuela Neves (2010)

Discussiones Mathematicae Probability and Statistics

Classical extreme value methods were derived when the underlying process is assumed to be a sequence of independent random variables. However when observations are taken along the time and/or the space the independence is an unrealistic assumption. A parameter that arises in this situation, characterizing the degree of local dependence in the extremes of a stationary series, is the extremal index, θ. In several areas such as hydrology, telecommunications, finance and environment, for example, the...

Filtering of signals transmitted in multichannel from Chandrasekhar and Riccati recursions.

S. Nakamori, A. Hermoso, J. Jiménez, J. Linares (2005)

Extracta Mathematicae

In this paper two recursive algorithms are proposed and compared as a solution of the least mean-squared error linear filtering problem of a wide-sense stationary scalar signal from uncertain observations perturbed by white and coloured additive noises. Considering that the state-space model of the signal is not available and that the variables modelling the uncertainty are not independent, the proposed algorithms are derived by using covariance information. The difference between both algorithms...

First order second moment analysis for stochastic interface problems based on low-rank approximation

Helmut Harbrecht, Jingzhi Li (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we propose a numerical method to solve stochastic elliptic interface problems with random interfaces. Shape calculus is first employed to derive the shape-Taylor expansion in the framework of the asymptotic perturbation approach. Given the mean field and the two-point correlation function of the random interface, we can thus quantify the mean field and the variance of the random solution in terms of certain orders of the perturbation amplitude by solving a deterministic elliptic interface...

Fourier analysis of iterative aggregation-disaggregation methods for nearly circulant stochastic matrices

Pultarová, Ivana (2013)

Programs and Algorithms of Numerical Mathematics

We introduce a new way of the analysis of iterative aggregation-disaggregation methods for computing stationary probability distribution vectors of stochastic matrices. This new approach is based on the Fourier transform of the error propagation matrix. Exact formula for its spectrum can be obtained if the stochastic matrix is circulant. Some examples are presented.

Currently displaying 261 – 280 of 744