Displaying 301 – 320 of 744

Showing per page

Global approximations for the γ-order Lognormal distribution

Thomas L. Toulias (2013)

Discussiones Mathematicae Probability and Statistics

A generalized form of the usual Lognormal distribution, denoted with γ , is introduced through the γ-order Normal distribution γ , with its p.d.f. defined into (0,+∞). The study of the c.d.f. of γ is focused on a heuristic method that provides global approximations with two anchor points, at zero and at infinity. Also evaluations are provided while certain bounds are obtained.

Goodness-of-fit tests for parametric regression models based on empirical characteristic functions

Marie Hušková, Simon G. Meintanis (2009)

Kybernetika

Test procedures are constructed for testing the goodness-of-fit in parametric regression models. The test statistic is in the form of an L2 distance between the empirical characteristic function of the residuals in a parametric regression fit and the corresponding empirical characteristic function of the residuals in a non-parametric regression fit. The asymptotic null distribution as well as the behavior of the test statistic under contiguous alternatives is investigated. Theoretical results are...

Graphics card as a cheap supercomputer

Přikryl, Jan (2013)

Programs and Algorithms of Numerical Mathematics

The current powerful graphics cards, providing stunning real-time visual effects for computer-based entertainment, have to accommodate powerful hardware components that are able to deliver the photo-realistic simulation to the end-user. Given the vast computing power of the graphics hardware, its producers very often offer a programming interface that makes it possible to use the computational resources of the graphics processors (GPU) to more general purposes. This step gave birth to the so-called...

GTES : une méthode de simulation par jeux et apprentissage pour l'analyse des systèmes d'acteurs

Y. Caseau (2009)

RAIRO - Operations Research

Cet article décrit une approche de la modélisation d'un système d'acteurs, particulièrement adaptée à la modélisation des entreprises, fondée sur la théorie des jeux [11] et sur l'optimisation par apprentissage du comportement de ces acteurs. Cette méthode repose sur la combinaison de trois techniques : la simulation par échantillonnage (Monte-Carlo), la théorie des jeux pour ce qui concerne la recherche d'équilibre entre les stratégies, et les méthodes heuristiques d'optimisation locale,...

High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data

Christoph Schwab, Svetlana Tokareva (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze the regularity of random entropy solutions to scalar hyperbolic conservation laws with random initial data. We prove regularity theorems for statistics of random entropy solutions like expectation, variance, space-time correlation functions and polynomial moments such as gPC coefficients. We show how regularity of such moments (statistical and polynomial chaos) of random entropy solutions depends on the regularity of the distribution law of the random shock location of the initial data....

High-order WENO scheme for polymerization-type equations*

Pierre Gabriel, Léon Matar Tine (2010)

ESAIM: Proceedings

Polymerization of proteins is a biochemical process involved in different diseases. Mathematically, it is generally modeled by aggregation-fragmentation-type equations. In this paper we consider a general polymerization model and propose a high-order numerical scheme to investigate the behavior of the solution. An important property of the equation is the mass conservation. The WENO scheme is built to preserve the total mass of proteins along time....

Holt-Winters method with general seasonality

Tomáš Hanzák (2012)

Kybernetika

The paper suggests a generalization of widely used Holt-Winters smoothing and forecasting method for seasonal time series. The general concept of seasonality modeling is introduced both for the additive and multiplicative case. Several special cases are discussed, including a linear interpolation of seasonal indices and a usage of trigonometric functions. Both methods are fully applicable for time series with irregularly observed data (just the special case of missing observations was covered up...

How many bins should be put in a regular histogram

Lucien Birgé, Yves Rozenholc (2006)

ESAIM: Probability and Statistics

Given an n-sample from some unknown density f on [0,1], it is easy to construct an histogram of the data based on some given partition of [0,1], but not so much is known about an optimal choice of the partition, especially when the data set is not large, even if one restricts to partitions into intervals of equal length. Existing methods are either rules of thumbs or based on asymptotic considerations and often involve some smoothness properties of f. Our purpose in this paper is to give an automatic,...

How powerful are data driven score tests for uniformity

Tadeusz Inglot, Alicja Janic (2009)

Applicationes Mathematicae

We construct a new class of data driven tests for uniformity, which have greater average power than existing ones for finite samples. Using a simulation study, we show that these tests as well as some "optimal maximum test" attain an average power close to the optimal Bayes test. Finally, we prove that, in the middle range of the power function, the loss in average power of the "optimal maximum test" with respect to the Neyman-Pearson tests, constructed separately for each alternative, in the Gaussian...

How the result of graph clustering methods depends on the construction of the graph

Markus Maier, Ulrike von Luxburg, Matthias Hein (2013)

ESAIM: Probability and Statistics

We study the scenario of graph-based clustering algorithms such as spectral clustering. Given a set of data points, one first has to construct a graph on the data points and then apply a graph clustering algorithm to find a suitable partition of the graph. Our main question is if and how the construction of the graph (choice of the graph, choice of parameters, choice of weights) influences the outcome of the final clustering result. To this end we study the convergence of cluster quality measures...

Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients⋆⋆⋆

J. Beck, F. Nobile, L. Tamellini, R. Tempone (2011)

ESAIM: Proceedings

In this work we first focus on the Stochastic Galerkin approximation of the solution u of an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features better convergence properties compared to standard polynomial subspaces such as Total Degree or Tensor Product. We consider then the Stochastic Collocation method, and use the previous estimates to introduce...

Improvement of Fisher's test of periodicity

Tomáš Cipra (1983)

Aplikace matematiky

Fisher's test of periodicity in time series and Siegel's version of this test for compound periodicities are investigated in the paper. An improvement increasing the power of the test is suggested and demonstrated by means of numerical simulations.

Improving feature selection process resistance to failures caused by curse-of-dimensionality effects

Petr Somol, Jiří Grim, Jana Novovičová, Pavel Pudil (2011)

Kybernetika

The purpose of feature selection in machine learning is at least two-fold - saving measurement acquisition costs and reducing the negative effects of the curse of dimensionality with the aim to improve the accuracy of the models and the classification rate of classifiers with respect to previously unknown data. Yet it has been shown recently that the process of feature selection itself can be negatively affected by the very same curse of dimensionality - feature selection methods may easily over-fit...

Currently displaying 301 – 320 of 744