On extremum-searching approximate probabilistic algorithms
Logrank-type and Kolmogorov-type goodness-of-fit tests for the absence of memory model are proposed when the accelerated experiments are done under step-stresses. The power of the test against the approaching alternatives is investigated. The theoretical results are illustrated with simulated data.
The impact of additive outliers on a performance of the Kalman filter is discussed and less outlier-sensitive modification of the Kalman filter is proposed. The improved filter is then used to obtain an improved smoothing algorithm and an improved state-space model parameters estimation.
It is shown that a popular variable choice method of Hellwig, which is recommended in the Polish econometric textbooks does not enjoy a very basic consistency property. It means in particular that the method may lead to rejection of significant variables in econometric modeling. A simulation study and a real data analysis case are given to support theoretical results.
In this paper, the linear problem of reactor kinetics with delayed neutrons is studied whose formulation is based on the integral transport equation. Besides the proof of existence and uniqueness of the solution, a special random process and random variables for numerical elaboration of the problem by Monte Carlo method are presented. It is proved that these variables give an unbiased estimate of the solution and that their expectations and variances are finite.
This paper introduces a novel method for selecting a feature subset yielding an optimal trade-off between class separability and feature space dimensionality. We assume the following feature properties: (a) the features are ordered into a sequence, (b) robustness of the features decreases with an increasing order and (c) higher-order features supply more detailed information about the objects. We present a general algorithm how to find under those assumptions the optimal feature subset. Its performance...