Displaying 41 – 60 of 83

Showing per page

On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity

Bedřich Sousedík, Howard C. Elman, Kookjin Lee, Randy Price (2022)

Applications of Mathematics

We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates...

On testing hypotheses in the generalized Skillings-Mack random blocks setting

František Rublík (2011)

Kybernetika

The testing of the null hypothesis of no treatment effect against the alternative of increasing treatment effect by means of rank statistics is extended from the classical Friedman random blocks model into an unbalanced design allowing treatments not to be applied simultaneously in each random block. The asymptotic normality of the constructed rank test statistic is proved both in the setting not allowing ties and also for models with presence of ties. As a by-product of the proofs a multiple comparisons...

On the autocorrelation function of a trended series.

Cecilio Mar Molinero (1985)

Qüestiió

Equations are derived for the autocorrelation function of a trended series. The special case of a linear trend is analysed in detail. It is shown that the zero of the autocorrelation function of a trended series is, in general, only dependent on the length of the series. This result is valid for stochastic and deterministic trends.

On the compound Poisson-gamma distribution

Christopher Withers, Saralees Nadarajah (2011)

Kybernetika

The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.

On the convergence of generalized polynomial chaos expansions

Oliver G. Ernst, Antje Mugler, Hans-Jörg Starkloff, Elisabeth Ullmann (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial chaos expansions to the correct limit and complement...

On the convergence of generalized polynomial chaos expansions

Oliver G. Ernst, Antje Mugler, Hans-Jörg Starkloff, Elisabeth Ullmann (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial...

On the convergence of SCF algorithms for the Hartree-Fock equations

Eric Cancès, Claude Le Bris (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The present work is a mathematical analysis of two algorithms, namely the Roothaan and the level-shifting algorithms, commonly used in practice to solve the Hartree-Fock equations. The level-shifting algorithm is proved to be well-posed and to converge provided the shift parameter is large enough. On the contrary, cases when the Roothaan algorithm is not well defined or fails in converging are exhibited. These mathematical results are confronted to numerical experiments performed by chemists.

On the convergence of the stochastic Galerkin method for random elliptic partial differential equations

Antje Mugler, Hans-Jörg Starkloff (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article we consider elliptic partial differential equations with random coefficients and/or random forcing terms. In the current treatment of such problems by stochastic Galerkin methods it is standard to assume that the random diffusion coefficient is bounded by positive deterministic constants or modeled as lognormal random field. In contrast, we make the significantly weaker assumption that the non-negative random coefficients can be bounded strictly away from zero and infinity by random...

On the discretization in time of parabolic stochastic partial differential equations

Jacques Printems (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion...

On the discretization in time of parabolic stochastic partial differential equations

Jacques Printems (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion...

On the efficiency of procedures for estimation of parameters in ARIMA models.

Bala Chandra (1984)

Trabajos de Estadística e Investigación Operativa

The paper discusses the implementation of the Newton-Raphson iterative method of estimation of parameters in the autoregressive integrated moving average (ARIMA) models. The efficiency of this method has been compared with other well known methods of estimation.

On the estimation of the autocorrelation function

Manuel Duarte Ortigueira (2010)

Discussiones Mathematicae Probability and Statistics

The autocorrelation function has a very important role in several application areas involving stochastic processes. In fact, it assumes the theoretical base for Spectral analysis, ARMA (and generalizations) modeling, detection, etc. However and as it is well known, the results obtained with the more current estimates of the autocorrelation function (biased or not) are frequently bad, even when we have access to a large number of points. On the other hand, in some applications, we need to perform...

Currently displaying 41 – 60 of 83