Displaying 581 – 600 of 744

Showing per page

Reversible jump MCMC for two-state multivariate Poisson mixtures

Jani Lahtinen, Jouko Lampinen (2003)

Kybernetika

The problem of identifying the source from observations from a Poisson process can be encountered in fault diagnostics systems based on event counters. The identification of the inner state of the system must be made based on observations of counters which entail only information on the total sum of some events from a dual process which has made a transition from an intact to a broken state at some unknown time. Here we demonstrate the general identifiability of this problem in presence of multiple...

Risk bounds for new M-estimation problems

Nabil Rachdi, Jean-Claude Fort, Thierry Klein (2013)

ESAIM: Probability and Statistics

In this paper, we consider a new framework where two types of data are available: experimental data Y1,...,Yn supposed to be i.i.d from Y and outputs from a simulated reduced model. We develop a procedure for parameter estimation to characterize a feature of the phenomenon Y. We prove a risk bound qualifying the proposed procedure in terms of the number of experimental data n, reduced model complexity and computing budget m. The method we present is general enough to cover a wide range of applications....

Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion

Luís Ramos (2010)

Discussiones Mathematicae Probability and Statistics

When a diffusion is ergodic its transition density converges to its invariant density, see Durrett (1998). This convergence enabled us to introduce a sample partitioning technique that gives in each sub-sample, maximum likelihood estimators. The averages of these being a natural choice as estimators. To compare our estimators with the optimal we obtained from martingale estimating functions, see Sørensen (1998), we used the Ornstein-Uhlenbeck process for which exact simulations can be carried out....

Seasonal Forcing Drives Spatio-Temporal Pattern Formation in Rabies Epidemics

N. V. Festenberg, T. Gross, B. Blasius (2010)

Mathematical Modelling of Natural Phenomena

Seasonal forcing is identified as a key pattern generating mechanism in an epidemic model of rabies dispersal. We reduce an established individual-based high-detail model down to a deterministic conceptual model. The characteristic wave pattern characterized by high densities of infected individuals is maintained throughout the reduction process. In our model it is evident that seasonal forcing is the dominant factor that drives pattern formation. In particular we show that seasonal forcing can...

Sensitivity analysis in singular mixed linear models with constraints

Eva Fišerová, Lubomír Kubáček (2003)

Kybernetika

The singular mixed linear model with constraints is investigated with respect to an influence of inaccurate variance components on a decrease of the confidence level. The algorithm for a determination of the boundary of the insensitivity region is given. It is a set of all shifts of variance components values which make the tolerated decrease of the confidence level only. The problem about geometrical characterization of the confidence domain is also presented.

Sensitivity studies of pollutant concentrations calculated by the UNI-DEM with respect to the input emissions

Ivan Dimov, Raya Georgieva, Tzvetan Ostromsky, Zahari Zlatev (2013)

Open Mathematics

The influence of emission levels on the concentrations of four important air pollutants (ammonia, ozone, ammonium sulphate and ammonium nitrate) over three European cities (Milan, Manchester, and Edinburgh) with different geographical locations is considered. Sensitivity analysis of the output of the Unified Danish Eulerian Model according to emission levels is provided. The Sobol’ variance-based approach for global sensitivity analysis has been applied to compute the corresponding sensitivity measures....

Sequential monitoring for change in scale

Ondřej Chochola (2008)

Kybernetika

We propose a sequential monitoring scheme for detecting a change in scale. We consider a stable historical period of length m . The goal is to propose a test with asymptotically small probability of false alarm and power 1 as the length of the historical period tends to infinity. The asymptotic distribution under the null hypothesis and consistency under the alternative hypothesis is derived. A small simulation study illustrates the finite sample performance of the monitoring scheme.

Simple Monte Carlo integration with respect to Bernoulli convolutions

David M. Gómez, Pablo Dartnell (2012)

Applications of Mathematics

We apply a Markov chain Monte Carlo method to approximate the integral of a continuous function with respect to the asymmetric Bernoulli convolution and, in particular, with respect to a binomial measure. This method---inspired by a cognitive model of memory decay---is extremely easy to implement, because it samples only Bernoulli random variables and combines them in a simple way so as to obtain a sequence of empirical measures converging almost surely to the Bernoulli convolution. We give explicit...

Simulation and approximation of Lévy-driven stochastic differential equations

Nicolas Fournier (2011)

ESAIM: Probability and Statistics

We consider the approximate Euler scheme for Lévy-driven stochastic differential equations. We study the rate of convergence in law of the paths. We show that when approximating the small jumps by Gaussian variables, the convergence is much faster than when simply neglecting them. For example, when the Lévy measure of the driving process behaves like |z|−1−αdz near 0, for some α ∈ (1,2), we obtain an error of order 1/√n with a computational cost of order nα. For a similar error when neglecting the...

Simulation and approximation of Lévy-driven stochastic differential equations

Nicolas Fournier (2012)

ESAIM: Probability and Statistics

We consider the approximate Euler scheme for Lévy-driven stochastic differential equations. We study the rate of convergence in law of the paths. We show that when approximating the small jumps by Gaussian variables, the convergence is much faster than when simply neglecting them. For example, when the Lévy measure of the driving process behaves like |z|−1−αdz near 0, for some α∈ (1,2), we obtain an error of order 1/√n with a computational cost of order nα. For a similar error when neglecting the...

Currently displaying 581 – 600 of 744