Displaying 781 – 800 of 1092

Showing per page

Quadratic splines smoothing the first derivatives

Jiří Kobza (1992)

Applications of Mathematics

The extremal property of quadratic splines interpolating the first derivatives is proved. Quadratic spline smoothing the given values of the first derivative, depending on the knot weights w i and smoothing parameter α , is then studied. The algorithm for computing appropriate parameters of such splines is given and the dependence on the smoothing parameter α is mentioned.

Quadratic Time Computable Instances of MaxMin and MinMax Area Triangulations of Convex Polygons

Mirzoev, Tigran, Vassilev, Tzvetalin (2010)

Serdica Journal of Computing

We consider the problems of finding two optimal triangulations of a convex polygon: MaxMin area and MinMax area. These are the triangulations that maximize the area of the smallest area triangle in a triangulation, and respectively minimize the area of the largest area triangle in a triangulation, over all possible triangulations. The problem was originally solved by Klincsek by dynamic programming in cubic time [2]. Later, Keil and Vassilev devised an algorithm that runs in O(n^2 log n) time...

Quadrature formulas based on the scaling function

Václav Finěk (2005)

Applications of Mathematics

The scaling function corresponding to the Daubechies wavelet with two vanishing moments is used to derive new quadrature formulas. This scaling function has the smallest support among all orthonormal scaling functions with the properties M 2 = M 1 2 and M 0 = 1 . So, in this sense, its choice is optimal. Numerical examples are given.

Currently displaying 781 – 800 of 1092