Displaying 101 – 120 of 1088

Showing per page

A weighted empirical interpolation method: a priori convergence analysis and applications

Peng Chen, Alfio Quarteroni, Gianluigi Rozza (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We extend the classical empirical interpolation method [M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Compt. Rend. Math. Anal. Num. 339 (2004) 667–672] to a weighted empirical interpolation method in order to approximate nonlinear parametric functions with weighted parameters, e.g. random variables obeying various probability distributions. A priori convergence analysis...

Acceleration of convergence of a two-level algebraic algorithm by aggregation in smoothing process

Stanislav Míka, Petr Vaněk (1992)

Applications of Mathematics

A two-level algebraic algorithm is introduced and its convergence is proved. The restriction as well as prolongation operators are defined with the help of aggregation classes. Moreover, a particular smoothing operator is defined in an analogical way to accelarate the convergence of the algorithm. A model example is presented in conclusion.

Acceleration of Le Bail fitting method on parallel platforms

Mařík, Ondřej, Šimeček, Ivan (2015)

Programs and Algorithms of Numerical Mathematics

Le Bail fitting method is procedure used in the applied crystallography mainly during the crystal structure determination. As in many other applications, there is a need for a great performance and short execution time. In this paper, we describe utilization of parallel computing for mathematical operations used in Le Bail fitting. We present an algorithm implementing this method with highlighted possible approaches to its aforementioned parallelization. Then, we propose a sample parallel version...

Accurate and online-efficient evaluation of the a posteriori error bound in the reduced basis method

Fabien Casenave, Alexandre Ern, Tony Lelièvre (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The reduced basis method is a model reduction technique yielding substantial savings of computational time when a solution to a parametrized equation has to be computed for many values of the parameter. Certification of the approximation is possible by means of an a posteriori error bound. Under appropriate assumptions, this error bound is computed with an algorithm of complexity independent of the size of the full problem. In practice, the evaluation of the error bound can become very sensitive...

Currently displaying 101 – 120 of 1088