A Computational Method for Eigenvalues and Eigenvectors of a Matrix with Real Eigenvalues.
It is well known that SOR iterative methods are convergent for linear systems, whose coefficient matrices are strictly or irreducibly diagonally dominant matrices and strong H-matrices (whose comparison matrices are nonsingular M-matrices). However, the same can not be true in case of those iterative methods for linear systems with weak H-matrices (whose comparison matrices are singular M-matrices). This paper proposes some necessary and sufficient conditions such that SOR iterative methods are...
An explicit formula for the deflation of a tridiagonal matrix is presented. The resulting matrix is again tridiagonal.
We multiply both sides of the complex symmetric linear system by to obtain a new equivalent linear system, then a dual-parameter double-step splitting (DDSS) method is established for solving the new linear system. In addition, we present an upper bound for the spectral radius of iteration matrix of the DDSS method and obtain its quasi-optimal parameter. Theoretical analyses demonstrate that the new method is convergent when some conditions are satisfied. Some tested examples are given to illustrate...