Displaying 961 – 980 of 1340

Showing per page

Proposition de préconditionneurs pseudo-différentiels pour l’équation CFIE de l’électromagnétisme

David P. Levadoux (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a weak parametrix of the operator of the CFIE equation. An interesting feature of this parametrix is that it is compatible with different discretization strategies and hence allows for the construction of efficient preconditioners dedicated to the CFIE. Furthermore, one shows that the underlying operator of the CFIE verifies an uniform discrete Inf-Sup condition which allows to predict an original convergence result of the numerical solution of the CFIE to the exact one.

Proposition de préconditionneurs pseudo-différentiels pour l'équation CFIE de l'électromagnétisme

David P. Levadoux (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

On exhibe dans cette note une paramétrix (au sens faible) de l'opérateur sous-jacent à l'équation CFIE de l'électromagnétisme. L'intérêt de cette paramétrix est de se prêter à différentes stratégies de discrétisation et ainsi de pouvoir être utilisée comme préconditionneur de la CFIE. On montre aussi que l'opérateur sous-jacent à la CFIE satisfait une condition Inf-Sup discrète uniforme, applicable aux espaces de discrétisation usuellement rencontrés en électromagnétisme, et qui permet d'établir...

Quasi-Monte Carlo Methods for some Linear Algebra Problems. Convergence and Complexity

Karaivanova, Aneta (2010)

Serdica Journal of Computing

We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods...

Rational Krylov for nonlinear eigenproblems, an iterative projection method

Elias Jarlebring, Heinrich Voss (2005)

Applications of Mathematics

In recent papers Ruhe suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similarly to the Arnoldi method the search space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate that the rational Krylov method can be accelerated considerably...

Real and complex pseudozero sets for polynomials with applications

Stef Graillat, Philippe Langlois (2007)

RAIRO - Theoretical Informatics and Applications

Pseudozeros are useful to describe how perturbations of polynomial coefficients affect its zeros. We compare two types of pseudozero sets: the complex and the real pseudozero sets. These sets differ with respect to the type of perturbations. The first set – complex perturbations of a complex polynomial – has been intensively studied while the second one – real perturbations of a real polynomial – seems to have received little attention. We present a computable formula for the real pseudozero...

Currently displaying 961 – 980 of 1340