A numerical solution using an adaptively preconditioned Lanczos method for a class of linear systems related with the fractional Poisson equation.
In this paper, we present extensive numerical tests showing the performance and robustness of a Balancing Neumann-Neumann method for the solution of algebraic linear systems arising from hp finite element approximations of scalar elliptic problems on geometrically refined boundary layer meshes in three dimensions. The numerical results are in good agreement with the theoretical bound for the condition number of the preconditioned operator derived in [Toselli and Vasseur, IMA J. Numer. Anal.24 (2004)...
This paper is motivated by the paper [3], where an iterative method for the computation of a matrix inverse square root was considered. We suggest a generalization of the method in [3]. We give some sufficient conditions for the convergence of this method, and its numerical stabillity property is investigated. Numerical examples showing that sometimes our generalization converges faster than the methods in [3] are presented.
In the present work we describe HPEC (High Performance Eigenvalues Computation), a parallel software package for the evaluation of some eigenvalues of a large sparse symmetric matrix. It implements an efficient and portable Block Lanczos algorithm for distributed memory multicomputers. HPEC is based on basic linear algebra operations for sparse and dense matrices, some of which have been derived by ScaLAPACK library modules. Numerical experiments have been carried out to evaluate HPEC performance...
A direct projection method for solving systems of linear algebraic equations is described. The algorithm is equivalent to the algorithm for minimization of the corresponding quadratic function and can be generalized for the minimization of a strictly convex function.
We give a derivation of an a-posteriori strategy for choosing the regularization parameter in Tikhonov regularization for solving nonlinear ill-posed problems, which leads to optimal convergence rates. This strategy requires a special stability estimate for the regularized solutions. A new proof fot this stability estimate is given.