Displaying 61 – 80 of 644

Showing per page

A weaker affine covariant Newton-Mysovskikh theorem for solving equations

Ioannis K. Argyros (2006)

Applicationes Mathematicae

The Newton-Mysovskikh theorem provides sufficient conditions for the semilocal convergence of Newton's method to a locally unique solution of an equation in a Banach space setting. It turns out that under weaker hypotheses and a more precise error analysis than before, weaker sufficient conditions can be obtained for the local as well as semilocal convergence of Newton's method. Error bounds on the distances involved as well as a larger radius of convergence are obtained. Some numerical examples...

Adaptive modeling for free-surface flows

Simona Perotto (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

This work represents a first step towards the simulation of the motion of water in a complex hydrodynamic configuration, such as a channel network or a river delta, by means of a suitable “combination” of different mathematical models. In this framework a wide spectrum of space and time scales is involved due to the presence of physical phenomena of different nature. Ideally, moving from a hierarchy of hydrodynamic models, one should solve throughout the whole domain the most complex model (with...

Adaptive wavelet methods for saddle point problems

Stephan Dahlke, Reinhard Hochmuth, Karsten Urban (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Recently, adaptive wavelet strategies for symmetric, positive definite operators have been introduced that were proven to converge. This paper is devoted to the generalization to saddle point problems which are also symmetric, but indefinite. Firstly, we investigate a posteriori error estimates and generalize the known adaptive wavelet strategy to saddle point problems. The convergence of this strategy for elliptic operators essentially relies on the positive definite character of the operator....

Affine-invariant monotone iteration methods with application to systems of nonlinear two-point boundary value problems

Rudolf L. Voller (1992)

Applications of Mathematics

In this paper we present a new theorem for monotone including iteration methods. The conditions for the operators considered are affine-invariant and no topological properties neither of the linear spaces nor of the operators are used. Furthermore, no inverse-isotony is demanded. As examples we treat some systems of nonlinear ordinary differential equations with two-point boundary conditions.

Algebras of approximation sequences: Fredholm theory in fractal algebras

Steffen Roch (2002)

Studia Mathematica

The present paper is a continuation of [5, 7] where a Fredholm theory for approximation sequences is proposed and some of its properties and consequences are studied. Here this theory is specified to the class of fractal approximation methods. The main result is a formula for the so-called α-number of an approximation sequence (Aₙ) which is the analogue of the kernel dimension of a Fredholm operator.

An application of the induction method of V. Pták to the study of regula falsi

Florian-Alexandru Potra (1981)

Aplikace matematiky

In this paper we introduce the notion of " p -dimensional rate of convergence" which generalizes the notion of rate of convergence introduced by V. Pták. Using this notion we give a generalization of the Induction Theorem of V. Pták, which may constitute a basis for the study of the iterative procedures of the form X n + 1 = F ( x n - p + 1 , X n - p + 2 , ... , x n ) , n = 0 , 1 , 2 , ... . As an illustration we apply these results to the study of the convergence of the secant method, obtaining sharp estimates for the errors at each step of the iterative procedure.

Currently displaying 61 – 80 of 644