Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints
The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states....
The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L∞ norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states. ...
In this paper, a distributed optimal consensus problem is investigated to achieve the optimization of the sum of local cost function for a group of agents in the Euler-Lagrangian (EL) system form. We consider that the local cost function of each agent is only known by itself and cannot be shared with others, which brings challenges in this distributed optimization problem. A novel gradient-based distributed continuous-time algorithm with the parameters of EL system is proposed, which takes the distributed...
The paper presents the Monotone Structural Evolution, a direct computational method of optimal control. Its distinctive feature is that the decision space undergoes gradual evolution in the course of optimization, with changing the control parameterization and the number of decision variables. These structural changes are based on an analysis of discrepancy between the current approximation of an optimal solution and the Maximum Principle conditions. Two particular implementations, with spike and...
Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving norms obtained by Nečas and on the general framework of Γ-convergence theory.
About two years ago, Gobbino [21] gave a proof of a De Giorgi's conjecture on the approximation of the Mumford-Shah energy by means of finite-differences based non-local functionals. In this work, we introduce a discretized version of De Giorgi's approximation, that may be seen as a generalization of Blake and Zisserman's “weak membrane” energy (first introduced in the image segmentation framework). A simple adaptation of Gobbino's results allows us to compute the Γ-limit of this discrete functional...
In matricial analysis, the theorem of Eckart and Young provides a best approximation of an arbitrary matrix by a matrix of rank at most r. In variational analysis or optimization, the Moreau envelopes are appropriate ways of approximating or regularizing the rank function. We prove here that we can go forwards and backwards between the two procedures, thereby showing that they carry essentially the same information.
Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are finite on the positive and infinite on the negative numbers, strictly convex but not necessarily differentiable. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The effective domain of the value function is described by a conic core, a modification of the earlier concept of convex core. Minimizers...
The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented lagrangians allows to apply an infinite-dimensional...
The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented Lagrangians allows to apply an...