Parallel algorithms for initial and boundary value problems for linear ordinary differential equations and their systems
We investigate biological processes, particularly the propagation of malaria. Both the continuous and the numerical models on some fixed mesh should preserve the basic qualitative properties of the original phenomenon. Our main goal is to give the conditions for the discrete (numerical) models of the malaria phenomena under which they possess some given qualitative property, namely, to be between zero and one. The conditions which guarantee this requirement are related to the time-discretization...
Initial value problems for systems of ordinary differential equations (ODEs) are solved numerically by using a combination of (a) the θ-method, (b) the sequential splitting procedure and (c) Richardson Extrapolation. Stability results for the combined numerical method are proved. It is shown, by using numerical experiments, that if the combined numerical method is stable, then it behaves as a second-order method.
In this paper, criteria are established for uniform stability, uniform ultimate boundedness and existence of periodic solutions for third order nonlinear ordinary differential equations. In the investigation Lyapunov’s second method is used by constructing a complete Lyapunov function to obtain our results. The results obtained in this investigation complement and extend many existing results in the literature.
We study the use of a GPU for the numerical approximation of the curvature dependent flows of graphs - the mean-curvature flow and the Willmore flow. Both problems are often applied in image processing where fast solvers are required. We approximate these problems using the complementary finite volume method combined with the method of lines. We obtain a system of ordinary differential equations which we solve by the Runge-Kutta-Merson solver. It is a robust solver with an automatic choice of the...
This paper considers modified second derivative BDF (MSD-BDF) for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are A-stable for step length .