3-point implicit block method for solving ordinary differential equations.
Page 1 Next
Majid, Zanariah Abdul, Bin Suleiman, Mohamed, Omar, Zurni (2006)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
E. Hairer (1986)
Numerische Mathematik
K.G. Guderley, C.L. Keller (1972)
Numerische Mathematik
Zbigniew Leyk (1986)
Numerische Mathematik
Zahran, Yousef Hashem (2006)
Novi Sad Journal of Mathematics
Manabu Sakai, Riaz A. Usmani (1987)
Numerische Mathematik
R.D. Russell, L.F. Shampine (1972)
Numerische Mathematik
Roos, Hans-Görg, Vanselow, Reiner (2008)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Brown, B.M., Kirby, V.G. (2000)
Journal of Inequalities and Applications [electronic only]
Anton Huťa, Vladimír Penjak (1984)
Aplikace matematiky
The purpose of this article is to find the 7th order formulas with rational parameters. The formulas are of the 11th stage. If we compare the coefficients of the development up to with the development given by successive insertion into the formula for and we obtain a system of 59 condition equations with 65 unknowns (except, the 1st one, all equations are nonlinear). As the solution of this system we get the parameters of the 7th order Runge-Kutta formulas as rational numbers.
Mahavier, W.T. (1997)
Abstract and Applied Analysis
Nguyen Canh (1974)
Kybernetika
Harald Berger (1989/1990)
Numerische Mathematik
Scholz, Lena (2011)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Z. Kowalski (1965)
Annales Polonici Mathematici
Tadeusz Styś (1981)
J.M. Ferrándiz, M. Teresa Pérez (1993)
Numerische Mathematik
M. Crouzeix, J.F. Ciavaldini (1985)
Numerische Mathematik
Eugene O'Riordan, Martin Stynes (1986/1987)
Numerische Mathematik
John Miller (1978)
Banach Center Publications
Page 1 Next