Minimum principle for quadratic spline collocation discretization of a convection-diffusion problem
Mathematics Subject Classification: 65C05, 60G50, 39A10, 92C37In this paper the multi-dimensional Monte-Carlo random walk simulation models governed by distributed fractional order differential equations (DODEs) and multi-term fractional order differential equations are constructed. The construction is based on the discretization leading to a generalized difference scheme (containing a finite number of terms in the time step and infinite number of terms in the space step) of the Cauchy problem for...
Kolmogorov -widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the -widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.
This paper is the continuation of the paper "Generalized periodic overimplicit multistep methods" of the same author and it deals with the necessary and, in some special cases, with the necessary and sufficient conditions for the convergence of general periodic overimplicit multistep methods.
A new method for computation of eigenvalues of the radial Schrödinger operator is presented. The potential is assumed to behave as if and as if . The Schrödinger equation is transformed to a non-linear differential equation of the first order for a function . It is shown that the eigenvalues are the discontinuity points of the function . Moreover, it is shown how to obtain an arbitrarily accurate approximation of eigenvalues. The method seems to be much more economical in comparison...
We tackle the numerical simulation of reaction-diffusion equations modeling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive fronts, spatially very localized. A new resolution strategy was recently introduced ? that combines...