Previous Page 3

Displaying 41 – 60 of 60

Showing per page

Numerical solution of boundary value problems for selfadjoint differential equations of 2 n th order

Jiří Taufer (2004)

Applications of Mathematics

The paper is devoted to solving boundary value problems for self-adjoint linear differential equations of 2 n th order in the case that the corresponding differential operator is self-adjoint and positive semidefinite. The method proposed consists in transforming the original problem to solving several initial value problems for certain systems of first order ODEs. Even if this approach may be used for quite general linear boundary value problems, the new algorithms described here exploit the special...

Numerical solution of second order one-dimensional linear hyperbolic equation using trigonometric wavelets

Mahmood Jokar, Mehrdad Lakestani (2012)

Kybernetika

A numerical technique is presented for the solution of second order one dimensional linear hyperbolic equation. This method uses the trigonometric wavelets. The method consists of expanding the required approximate solution as the elements of trigonometric wavelets. Using the operational matrix of derivative, we reduce the problem to a set of algebraic linear equations. Some numerical example is included to demonstrate the validity and applicability of the technique. The method produces very accurate...

Numerical solution of the Maxwell equations in time-varying media using Magnus expansion

István Faragó, Ágnes Havasi, Robert Horváth (2012)

Open Mathematics

For the Maxwell equations in time-dependent media only finite difference schemes with time-dependent conductivity are known. In this paper we present a numerical scheme based on the Magnus expansion and operator splitting that can handle time-dependent permeability and permittivity too. We demonstrate our results with numerical tests.

Currently displaying 41 – 60 of 60

Previous Page 3