Displaying 701 – 720 of 882

Showing per page

Some applications of the Pascal matrix to the study of numerical methods for differential equations

Lidia Aceto (2005)

Bollettino dell'Unione Matematica Italiana

In this paper we introduce and analyze some relations between the Pascal matrix and a new class of numerical methods for differential equations obtained generalizing the Adams methods. In particular, we shall prove that these methods are suitable for solving stiff problems since their absolute stability regions contain the negative half complex plane.

Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs

Abdellah Chkifa, Albert Cohen, Ronald DeVore, Christoph Schwab (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The numerical approximation of parametric partial differential equations is a computational challenge, in particular when the number of involved parameter is large. This paper considers a model class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending on the parameters in an affine manner. For such models, it was shown in [9, 10] that under very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations...

Special exact curved finite elements

Jitka Křížková (1991)

Applications of Mathematics

Special exact curved finite elements useful for solving contact problems of the second order in domains boundaries of which consist of a finite number of circular ares and a finite number of line segments are introduced and the interpolation estimates are proved.

Currently displaying 701 – 720 of 882