Solving nonlinear boundary value problems using He's polynomials and Padé approximants.
In this paper we introduce and analyze some relations between the Pascal matrix and a new class of numerical methods for differential equations obtained generalizing the Adams methods. In particular, we shall prove that these methods are suitable for solving stiff problems since their absolute stability regions contain the negative half complex plane.
This paper presents a class of numerical methods for approximate solution of systems of ordinary differential equations. It is shown that under certain general conditions these methods are convergent for sufficiently small step size. We give estimations of errors which are better than the known ones.
The numerical approximation of parametric partial differential equations is a computational challenge, in particular when the number of involved parameter is large. This paper considers a model class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending on the parameters in an affine manner. For such models, it was shown in [9, 10] that under very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations...
Special exact curved finite elements useful for solving contact problems of the second order in domains boundaries of which consist of a finite number of circular ares and a finite number of line segments are introduced and the interpolation estimates are proved.