Displaying 81 – 100 of 125

Showing per page

On the solution of linear algebraic systems arising from the semi–implicit DGFE discretization of the compressible Navier–Stokes equations

Vít Dolejší (2010)

Kybernetika

We deal with the numerical simulation of a motion of viscous compressible fluids. We discretize the governing Navier–Stokes equations by the backward difference formula – discontinuous Galerkin finite element (BDF-DGFE) method, which exhibits a sufficiently stable, efficient and accurate numerical scheme. The BDF-DGFE method requires a solution of one linear algebra system at each time step. In this paper, we deal with these linear algebra systems with the aid of an iterative solver. We discuss...

On the worst scenario method: a modified convergence theorem and its application to an uncertain differential equation

Petr Harasim (2008)

Applications of Mathematics

We propose a theoretical framework for solving a class of worst scenario problems. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. The main convergence theorem modifies and corrects the relevant results already published in literature. The theoretical framework is applied to a particular problem with an uncertain boundary value problem for a nonlinear ordinary differential equation with an uncertain coefficient.

On those ordinary differential equations that are solved exactly by the improved Euler method

Hans Jakob Rivertz (2013)

Archivum Mathematicum

As a numerical method for solving ordinary differential equations y ' = f ( x , y ) , the improved Euler method is not assumed to give exact solutions. In this paper we classify all cases where this method gives the exact solution for all initial conditions. We reduce an infinite system of partial differential equations for f ( x , y ) to a finite system that is sufficient and necessary for the improved Euler method to give the exact solution. The improved Euler method is the simplest explicit second order Runge-Kutta method....

On total truncation error estimation for the one-step method

Anna Valková (1987)

Aplikace matematiky

In this paper the author establishes estimation of the total truncation error after s steps in the fifth order Ruge-Kutta-Huťa formula for systems of differential equations. The approach is analogous to that used by Vejvoda for the estimation of the classical formulas of the Runge-Kutta type of the 4-th order.

Currently displaying 81 – 100 of 125