The application of the method of differential relations to the equations of continuum mechanics
The Boltzmann–Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child–Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child–Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child–Langmuir regime by performing detailed numerical comparisons...
The Boltzmann–Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child–Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child–Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child–Langmuir regime by performing detailed numerical...
We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in and...