Previous Page 2

Displaying 21 – 38 of 38

Showing per page

Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation

Mohamed Amara, Christine Bernardi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The standard discretization of the Stokes and Navier–Stokes equations in vorticity and stream function formulation by affine finite elements is known for its bad convergence. We present here a modified discretization, we prove that the convergence is improved and we establish a priori error estimates.

Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem

Florian Mehats (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present here a discretization of a nonlinear oblique derivative boundary value problem for the heat equation in dimension two. This finite difference scheme takes advantages of the structure of the boundary condition, which can be reinterpreted as a Burgers equation in the space variables. This enables to obtain an energy estimate and to prove the convergence of the scheme. We also provide some numerical simulations of this problem and a numerical study of the stability of the scheme, which appears...

Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem

Florian Mehats (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present here a discretization of a nonlinear oblique derivative boundary value problem for the heat equation in dimension two. This finite difference scheme takes advantages of the structure of the boundary condition, which can be reinterpreted as a Burgers equation in the space variables. This enables to obtain an energy estimate and to prove the convergence of the scheme. We also provide some numerical simulations of this problem and a numerical study of the stability of the scheme, which appears...

Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation

Daniel Matthes, Horst Osberger (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation’s gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We...

Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

Anton Evgrafov, Misha Marie Gregersen, Mads Peter Sørensen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems ...

Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

Anton Evgrafov, Misha Marie Gregersen, Mads Peter Sørensen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems ...

Convergence of discretization procedures for problems whose entropy solutions are uniquely characterized by additional relations

Rainer Ansorge (2003)

Applications of Mathematics

Weak solutions of given problems are sometimes not necessarily unique. Relevant solutions are then picked out of the set of weak solutions by so-called entropy conditions. Connections between the original and the numerical entropy condition were often discussed in the particular case of scalar conservation laws, and also a general theory was presented in the literature for general scalar problems. The entropy conditions were realized by certain inequalities not generalizable to systems of equations...

Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems

Markus Aurada, Michael Feischl, Dirk Praetorius (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear) interface problem for the 2D Laplacian. We introduce some new a posteriori error estimators based on the (h − h/2)-error estimation strategy. In particular, these include the approximation error for the boundary data, which allows to work with discrete boundary integral operators only. Using the concept of estimator reduction, we prove that the proposed adaptive...

Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems

Markus Aurada, Michael Feischl, Dirk Praetorius (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear) interface problem for the 2D Laplacian. We introduce some new a posteriori error estimators based on the (h − h/2)-error estimation strategy. In particular, these include the approximation error for the boundary data, which allows to work with discrete boundary integral operators only. Using the concept of estimator reduction, we prove that the proposed adaptive...

Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem

Yves Coudière, Jean-Paul Vila, Philippe Villedieu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a class of cell centered finite volume schemes, on general unstructured meshes, for a linear convection-diffusion problem, is studied. The convection and the diffusion are respectively approximated by means of an upwind scheme and the so called diamond cell method [4]. Our main result is an error estimate of order h, assuming only the W2,p (for p>2) regularity of the continuous solution, on a mesh of quadrangles. The proof is based on an extension of the ideas developed in...

Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes

Yves Coudière, Philippe Villedieu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion equation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H1 finite volume space. We actually prove the convergence of the scheme in a discrete H1 norm, with an error estimate of order O(h) (on meshes...

Currently displaying 21 – 38 of 38

Previous Page 2