Previous Page 2

Displaying 21 – 38 of 38

Showing per page

A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations

Blanca Ayuso de Dios, Ivan Georgiev, Johannes Kraus, Ludmil Zikatanov (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed...

Adaptive algorithm for stochastic Galerkin method

Ivana Pultarová (2015)

Applications of Mathematics

We introduce a new tool for obtaining efficient a posteriori estimates of errors of approximate solutions of differential equations the data of which depend linearly on random parameters. The solution method is the stochastic Galerkin method. Polynomial chaos expansion of the solution is considered and the approximation spaces are tensor products of univariate polynomials in random variables and of finite element basis functions. We derive a uniform upper bound to the strengthened Cauchy-Bunyakowski-Schwarz...

All-at-once preconditioning in PDE-constrained optimization

Tyrone Rees, Martin Stoll, Andy Wathen (2010)

Kybernetika

The optimization of functions subject to partial differential equations (PDE) plays an important role in many areas of science and industry. In this paper we introduce the basic concepts of PDE-constrained optimization and show how the all-at-once approach will lead to linear systems in saddle point form. We will discuss implementation details and different boundary conditions. We then show how these system can be solved efficiently and discuss methods and preconditioners also in the case when bound...

Application of relaxation scheme to degenerate variational inequalities

Jela Babušíková (2001)

Applications of Mathematics

In this paper we are concerned with the solution of degenerate variational inequalities. To solve this problem numerically, we propose a numerical scheme which is based on the relaxation scheme using non-standard time discretization. The approximate solution on each time level is obtained in the iterative way by solving the corresponding elliptic variational inequalities. The convergence of the method is proved.

Currently displaying 21 – 38 of 38

Previous Page 2