Displaying 1041 – 1060 of 1415

Showing per page

On the Newton-Kantorovich theorem and nonlinear finite element methods

Ioannis K. Argyros (2009)

Applicationes Mathematicae

Using a weaker version of the Newton-Kantorovich theorem, we provide a discretization result to find finite element solutions of elliptic boundary value problems. Our hypotheses are weaker and under the same computational cost lead to finer estimates on the distances involved and a more precise information on the location of the solution than before.

On the numerical approximation of first-order Hamilton-Jacobi equations

Rémi Abgrall, Vincent Perrier (2007)

International Journal of Applied Mathematics and Computer Science

Some methods for the numerical approximation of time-dependent and steady first-order Hamilton-Jacobi equations are reviewed. Most of the discussion focuses on conformal triangular-type meshes, but we show how to extend this to the most general meshes. We review some first-order monotone schemes and also high-order ones specially dedicated to steady problems.

On the numerical modeling of deformations of pressurized martensitic thin films

Pavel Bělík, Timothy Brule, Mitchell Luskin (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.

On the Numerical Modeling of Deformations of Pressurized Martensitic Thin Films

Pavel Bělík, Timothy Brule, Mitchell Luskin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.

On the numerical performance of a sharp a posteriori error estimator for some nonlinear elliptic problems

Balázs Kovács (2014)

Applications of Mathematics

Karátson and Korotov developed a sharp upper global a posteriori error estimator for a large class of nonlinear problems of elliptic type, see J. Karátson, S. Korotov (2009). The goal of this paper is to check its numerical performance, and to demonstrate the efficiency and accuracy of this estimator on the base of quasilinear elliptic equations of the second order. The focus will be on the technical and numerical aspects and on the components of the error estimation, especially on the adequate...

On the numerical solution of axisymmetric domain optimization problems

Ivan Hlaváček, Raino Mäkinen (1991)

Applications of Mathematics

An axisymmetric second order elliptic problem with mixed boundarz conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The numerical realization is presented in detail. The convergence of piecewise linear approximations is proved. Several numerical examples are given.

On the optimal setting of the h p -version of the finite element method

Chleboun, Jan (2013)

Programs and Algorithms of Numerical Mathematics

The goal of this contribution is to find the optimal finite element space for solving a particular boundary value problem in one spatial dimension. In other words, the optimal use of available degrees of freedom is sought after. This is done through optimizing both the mesh and the polynomial degree of the basis functions. The resulting combinatorial optimization problem is solved in parallel by a Matlab program running on a cluster of multi-core personal computers.

On the preconditioned biconjugate gradients for solving linear complex equations arising from finite elements

Michal Křížek, Jaroslav Mlýnek (1994)

Banach Center Publications

The paper analyses the biconjugate gradient algorithm and its preconditioned version for solving large systems of linear algebraic equations with nonsingular sparse complex matrices. Special emphasis is laid on symmetric matrices arising from discretization of complex partial differential equations by the finite element method.

On the Schwarz algorithms for the elliptic exterior boundary value problems

Faker Ben Belgacem, Miche Fournié, Nabil Gmati, Faten Jelassi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Tuning the alternating Schwarz method to the exterior problems is the subject of this paper. We present the original algorithm and we propose a modification of it, so that the solution of the subproblem involving the condition at infinity has an explicit integral representation formulas while the solution of the other subproblem, set in a bounded domain, is approximated by classical variational methods. We investigate many of the advantages of the new Schwarz approach: a geometrical convergence...

On the Schwarz algorithms for the Elliptic Exterior Boundary Value Problems

Faker Ben Belgacem, Michel Fournié, Nabil Gmati, Faten Jelassi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Tuning the alternating Schwarz method to the exterior problems is the subject of this paper. We present the original algorithm and we propose a modification of it, so that the solution of the subproblem involving the condition at infinity has an explicit integral representation formulas while the solution of the other subproblem, set in a bounded domain, is approximated by classical variational methods. We investigate many of the advantages of the new Schwarz approach: a geometrical convergence...

On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes

Pascal Omnes (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken P1 function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the L2 norm, under the sufficient condition that the...

Currently displaying 1041 – 1060 of 1415